

CILINDRI OLEODINAMICI ISO 6020/2

INDICE

CHI SIAMO	PAG. 4
GAMMA DEI CILINDRI OLEODINAMICI ISO 6020/2	PAG. 5
CARATTERISTICHE GENERALI	PAG. 6
CARATTERISTICHE TECNICHE	PAG. 7
SEZIONE CILINDRI	PAG. 8
COMPOSIZIONE CODICE D'ORDINAZIONE	PAG. 9
SCELTA CILINDRO	PAG. 11
ESTREMITÀ STELO	PAG. 17
ANCORAGGIO X, T, A, B, C, M, D, E, G, L, H, Q, R, S	PAG. 19
ANCORAGGIO DOPPIO STELO X, A, E, G, H, Q	PAG. 33
ACCESSORI	PAG. 40
TERMINALE "CS"	PAG. 40
TERMINALE "TS" e "CF"	PAG. 41
TERMINALE "ISH" e "CM"	PAG. 42
TERMINALE "CSA" e "CSB"	PAG. 43
TERMINALE "CTS" e "PCS"	PAG. 44
TERMINALE "PTS", "KCS" e "PP"	PAG. 45
ESEMPI DI ATTACCHI	PAG. 46
SENSORI	PAG. 47
ESEMPI DI ESECUZIONI SPECIALI	PAG. 50
GAMMA DI PRODOTTI IDROTECK	PAG. 53
GARANZIA E LIMITI DI RESPONSABILITÀ	PAG. 54

AZIENDA

Siamo specialisti del settore oleodinamico, produciamo cilindri e componenti per l'impiantistica idraulica e vantiamo un'esperienza fortemente consolidata da oltre venticingue anni.

Raccogliamo costantemente le nuove sfide dei mercati con la forza di una vocazione innata, di un fare esclusivo ed altamente specializzato ed un know how che ci permette di soddisfare al meglio le richieste della nostra clientela in termini di tempo di consegna e qualità del prodotto.

La scelta di materiali di prima qualità ed un magazzino ben fornito di componenti pre lavorati a disposizione, garantiscono difatti consegne rapide nel rispetto dei tempi stabili.

L'esame di fattibilità e il progetto vengono eseguiti presso il nostro ufficio tecnico interno, che si occupa di studiare ed elaborare soprattutto le applicazioni speciali; la capacità di evolvere e confrontarci con le esigenze dei nostri clienti ci ha permesso di sviluppare un comparto di ricerca e sviluppo con metodi e tecnologie moderne ed innovative per la realizzazione di cilindri personalizzati.

I particolari che compongono i cilindri vengono eseguiti con macchine utensili di ultima generazione a controllo numerico.

La gestione dei processi e la continua ricerca al miglioramento ci hanno permesso di fornire componenti per applicazioni in molteplici settori produttivi con successo e merito, riconosciuto dalla nostra clientela.

"FLESSIBILITÀ PRODUTTIVA, RICERCA, SERVIZIO E COSTANTE INNOVAZIONE"

GAMMA DEI CILINDRI OLEODINAMICI ISO 6020/2

CILINDRI OLEODINAMICI SERIE CD - DK

Costruiti secondo normativa ISO 6020/2, a doppio effetto, trovano impiego in tutti i settori industriali dove si richiedono attuatori idraulici funzionanti a medie pressioni (160 Bar). Sono disponibili in 14 combinazioni di fissaggi standard, 3 diametri stelo per ogni alesaggio (escluso Ø25), 3 tipologie di guarnizioni e 3 tipi di terminali steli che unitamente alla disponibilità di costruzioni speciali, offrono una vasta scelta all'utilizzatore finale.

CILINDRI OLEODINAMICI MAGNETICI SERIE MD

Con caratteristiche meccaniche e dimensionali uguali alla serie CD, con la differenza che all'interno del pistone è inserito un magnete permanente, ne consegue l'attivazione di un campo magnetico che si estende all'esterno della camicia in lega speciale amagnetica.

Il campo magnetico si muove solidale al pistone per tutta la lunghezza della corsa ed al suo passaggio aziona uno o più sensori adeguatamente fissati che generano un segnale elettrico.

I sensori magnetici possono essere con contatto (REED) o elettronici a richiesta.

CARATTERISTICHE PRINCIPALI DEI CILINDRI OLEODINAMICI ISO 6020/2

(secondo normativa ISO 6020/2 - 1991 - DIN 24554)

DIAMETRI PISTONE (ø mm) 25 - 32 - 40 - 50 - 63 - 80 - 100 - 125 - 160 - 200 **DIAMETRI STELO** (ø mm) 12 - 14 - 18 - 22 - 28 - 36 - 45 - 56 - 70 - 90 - 110 - 140

PRESSIONE

Di esercizio (bar) 160 esente da picchi Minima (bar) 8

CORSA (mm) fino a 4000

Tolleranza sulla corsa (mm) 0 + 2 (secondo normativa ISO 8131)

TEMPERATURA DI LAVORO (°C)

con guarnizioni standard -20 \div +80 con guarnizioni VITON® (W) -20 \div +150 con guarnizioni basso attrito (Y) -20 \div +90

VELOCITÀ DI TRASLAZIONE (M/S)

con guarnizioni standard $0.02 \div 0.4$ con guarnizioni VITON® (W) $0.02 \div 3$ con guarnizioni basso attrito (Y) $0.01 \div 3$

FLUIDO DI UTILIZZO con riferimento (secondo normative ISO 6743/4 - ISO 4406)

Olio idraulico minerale Oli sintetici ed esteri fosforici Fluido acqua-glicole (HFC)

TESTATE quadre in acciaio assemblate con 4 tiranti

TIRANTI in acciaio bonificato

GUIDA STELO in bronzo

FRENATURA anteriore e/o posteriore a richiesta

ATTACCHI di fissaggio in 14 tipi

TERMINALE STELO filettato maschio standard o femmina su richiesta a scelta

BOCCHE DI ALIMENTAZIONE standard filettate gas cilindrico, a richiesta si possono fornire filettature NPTF o SAE

SERIE CD-DK

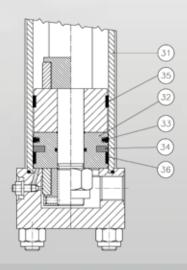
Camicia in acciaio levigato internamente H8 Ra 0.4 Stelo in acciaio C45 cromato, possibili varianti in acciaio bonificato - temprato - INOX Pistone in acciaio

SERIE MD (con sensori magnetici)

Camicia in materiale amagnetico levigato internamente H8 Ra 0.4 Pistone in lega speciale amagnetica con inserto magnetico

CARATTERISTICHE TECNICHE

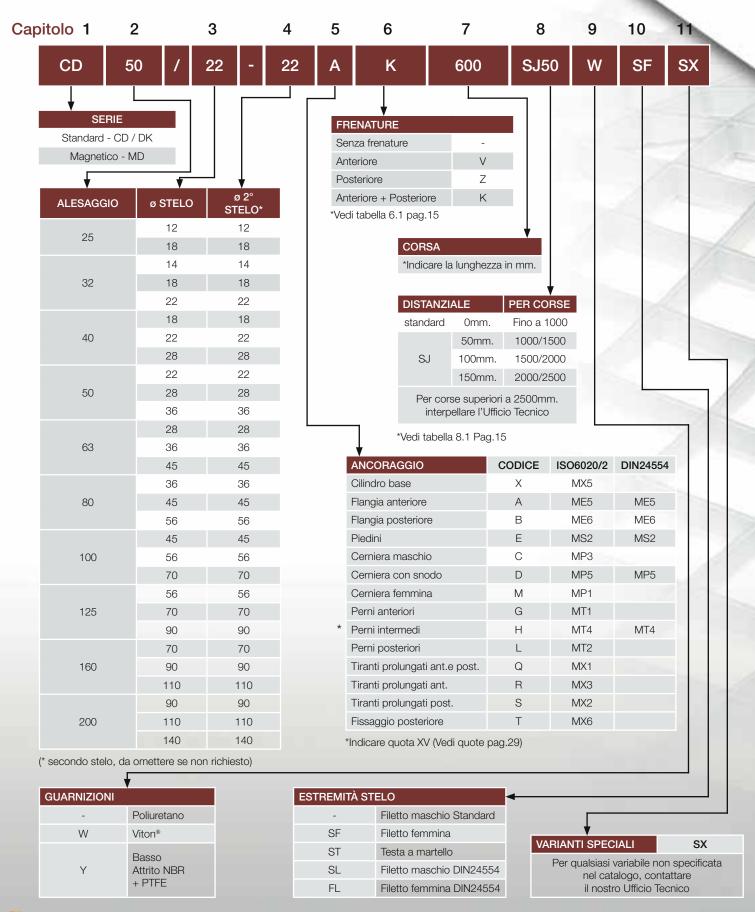

Serie	CD	MD	DK					
Normativa di costruzione	IS	554						
Diametro pistone	25 - 32 - 40 - 50	125 - 160 - 200						
Pressione di esercizio (Bar)	16	60	160					
Pressione minima (Bar)								
Corsa (mm)	5 - 4000	5 - 4000						
Tolleranze sulla corsa (mm)	0 +2	3131						
	Guarnizioni standard	Guarnizioni standard						
Temperatura di lavoro (°C)	Guarnizioni VITON® (W)		-20 ÷ +150					
	Guarnizioni a basso attrito	-20 ÷ +90						
	Guarnizioni standard	$0.02 \div +0.4$						
Velocità di traslazione (m/s)	Guarnizioni VITON® (W)		0,02 ÷ +3					
	Guarnizioni a basso attrito	o (Y)	0,01÷ +3					
Fluido	Olio Idraulico Minerale - Oli Sintetici ed Esteri Fosforici							
Tidido	Acqua - Glicole (HFC) con riferimento alle Normative ISO 6743/4 - ISO 4406							
Frenature		Anteriore e/o Posteriore						
Sensori magnetici		Solo per serie MD						
Testate	Quadre	e in acciaio assemblate con	4 tiranti					
Camicia		oK in Acciaio Levigato Interr Speciale Amagnetica Leviga						
Stelo	Possibili varia	Acciaio C45 Cromato Inti in Acciaio Bonificato - Temprato - Inox						
Pistone	Serie MD	Serie CD-DK in Acciaio in Acciaio Inox con Inserto	Magnetico					
Guida stelo		Bronzo						
Tiranti		Acciaio Bonificato						


CILINDRI OLEODINAMICI SERIE: CD - DK - MD

SEZIONE TIPICA SERIE CD-DK

SEZ. GUARNIZIONI STANDARD SEZ. GUARNIZIONI BASSO ATTRITO

SEZIONE TIPICA SERIE MD



Pos.	Denominazione	Materiale
1	Stelo	Acciaio cromato
2	Flangetta	Acciaio
3	Boccola di guida	Bronzo
4	Testata anteriore	Acciaio
5	Camicia	Acciaio
6	Bussola freno anteriore (a richiesta)	Acciaio
7	Freno anteriore (a richiesta)	Acciaio temprato
8	Distanziale (a richiesta)	Acciaio
9	Pistone	Acciaio
10	Freno posteriore (a richiesta)	Acciaio temprato
11	Bussola freno posteriore (a richiesta)	Acciaio
12	Testata posteriore	Acciaio
13	Dado autobloccante	Acciaio
14	Tirante	Acciaio bonificato
15	Grano antisvitamento	Acciaio
16	Spillo regolazione frenatura	Acciaio
17	Raschiatore stelo	Poliuretano
18	Guarnizione stelo	Poliuretano
19	Guarnizione OR + antiestrusione	Gomma nitrilica + P.T.F.E.
20	Guarnizione OR + antiestrusione	Gomma nitrilica + P.T.F.E.
21	Guarnizione OR	Gomma nitrilica
22	Guarnizione pistone	NBR/ Poliuretano
23	Guarnizione OR + antiestrusione	Gomma nitrilica + P.T.F.E.
24	Guarnizione pistone (Y)	Gomma nitrilica + P.T.F.E.
25	Pattino di guida pistone	P.T.F.E.
26	Pattino di guida distanziale	P.T.F.E.
27	Guarnizione stelo	Gomma nitrilica + P.T.F.E.
28	Raschiatore stelo	Gomma nitrilica + P.T.F.E.
29	Dado autobloccante	Acciaio
30	Dado freno	Acciaio

Pos.	Denominazione	Materiale
31	Camicia	Lega amagnetica
32	Pistone	Acciaio inox
33	Guarnizione pistone (Y)	Gomma nitrilica + P.T.F.E.
34	Magnete	Neodinium
35	Pattino di guida distanziale	P.T.F.E.
36	Pattino di guida pistone	P.T.F.E.

CODICE DI ORDINAZIONE

NOTE:

- · Per comporre il codice d'ordinazione seguire lo schema di codifica inserendo in sequenza le sigle che identificano le caratteristiche costruttive del cilindro, tralasciando quelle non richieste. STANDARD: le caratteristiche standard non vanno citate.
- · Ogni sigla ha come riferimento un numero (soprastante) che identifica il capitolo in cui sono esplicate le caratteristiche tecniche che la identificano.
- · I sensori per i cilindri magnetici, anche se inseriti nella codifica, sono forniti separatamente e vanno richiesti a parte indicando la quantità e la tipologia. Es.:
- 1 Cilindro MD50/28A600 N° 2 sensori SCTM8 Cilindro magnetico, alesaggio ø50, stelo ø28, fissaggio con flangia anteriore A (ME5), corsa 600 mm.

A parte sono forniti n°2 sensori tipo SCTM8 con relative staffe e connettori. (vedi pag. 47)

CARATTERISTICHE E SCELTA DI UN CILINDRO

1 SERIE COSTRUTTIVA: CD STANDARD e MD MAGNETICO (da ø 25 a ø 100) 160 bar DK GRANDI DIAMETRI (da ø 125 a ø 200) 160 bar

2 ALESAGGIO

Si sceglie in relazione alla forza da sviluppare. La tabella sottostante indica l'area del pistone in spinta e in tiro in funzione dello stelo usato.

Moltiplicando l'area (cm²) per la pressione di lavoro (bar - Kg/cm²) si ottiene la forza (daN - Kg.) di spinta e tiro del cilindro.

Es. Cilindro ø50 – stelo ø28

funzionante a 100 bar

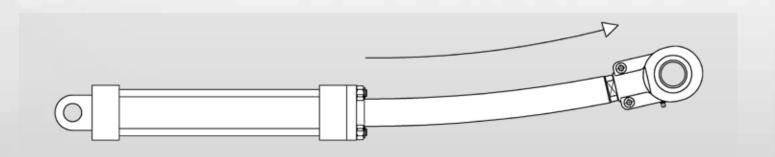
Forza di spinta F1 = (19,63x100) = 1.963 daN = 19,63 kN

Forza di tiro $\mathbf{F2} = (13,47 \times 100) = 1.347 \text{ daN} = 13,47 \text{ kN}$

Tab. 2.1										
Dimensior	si.	Rapporto	Superfic	ci (area)	Forza teorica					
Difficusion	"	superfici	Spinta	Tiro	Spinta	Tiro	Spinta	Tiro		
Alesaggio ø Pistone (mm)	ø Stelo (mm)	Area spinta > < Area tiro	Area spinta (cm²)	Area tiro (cm²)	100 bar F1 (kN)	100 bar F2 (kN)	160 bar F1 (kN)	160 bar F2 (kN)		
05	12	1,30	4.04	3,78	4.01	3,78	7.05	6,04		
25	18	2,08	4,91	2,36	4,91	2,36	7,85	3,78		
	14	1,24		6,50		6,50		10,40		
32	18	1,46	8,04	5,50	8,04	5,50	12,87	8,80		
	22	1,90		4,24		4,24		6,79		
	18	1,25		10,02		10,02		16,03		
40	22	1,43	12,56	8,77	12,56	8,77	20,11	14,02		
	28	1,96		6,40		6,40		10,25		
	22	1,24		15,83		15,83		25,33		
50	28	1,46	19,63	13,48	19,63	13,48	31,42	21,56		
	36	2,08		9,45		9,45		15,13		
	28	1,25		25,01		25,01		40,02		
63	36	1,48	31,17	20,99	31,17	20,99	49,88	33,59		
	45	2,04		15,27		15,27		24,43		
	36	1,25		40,08		40,08		64,14		
80	45	1,46	50,26	34,36	50,26	34,36	80,42	54,98		
	56	1,96		25,63		25,63		41,02		
	45	1,25		62,64		62,64		100,21		
100	56	1,46	78,53	53,91	78,53	53,91	125,66	86,26		
	70	1,96		40,06		40,06		64,09		
	56	1,25		98,09		98,09		156,94		
125	70	1,46	121,05	84,23	121,05	84,23	196,35	134,77		
	90	2,08		59,10		59,10		94,56		
	70	1,24		162,58		162,58		260,12		
160	90	1,46	200,96	137,44	200,96	137,44	321,70	219,91		
	110	1,90		106,03		106,03		169,65		
	90	1,25		250,54		250,54		400,86		
200	110	1,43	314,15	219,12	314,15	219,12	502,65	350,60		
	140	1,96		160,22		160,22		256,35		

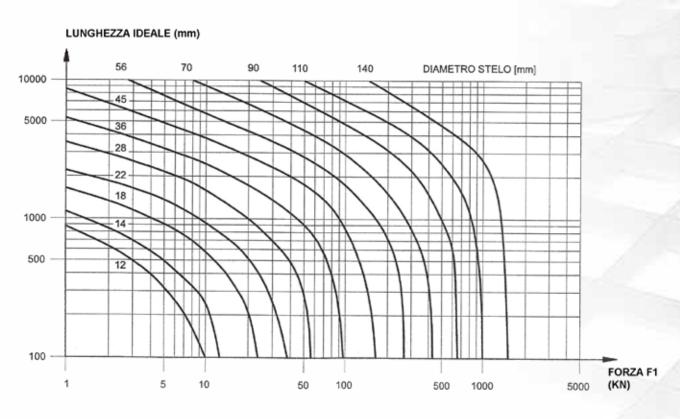
3 STELO

Scegliere lo stelo disponibile in relazione al diametro del cilindro (Tab. 2.1) verificando i carichi di punta nel paragrafo successivo.


3.1 VERIFICA DEL CARICO DI PUNTA

Durante la fase di spinta, lo stelo è sottoposto ad una forza assiale contraria che tende a fletterlo o a spezzarlo se supera il carico di punta ammesso. In base alla scelta fatta, è necessario verificare il carico sullo stelo alla massima estensione, a seconda del tipo di ancoraggio utilizzato.

La tabella sottostante indica il valore del fattore di corsa FC.

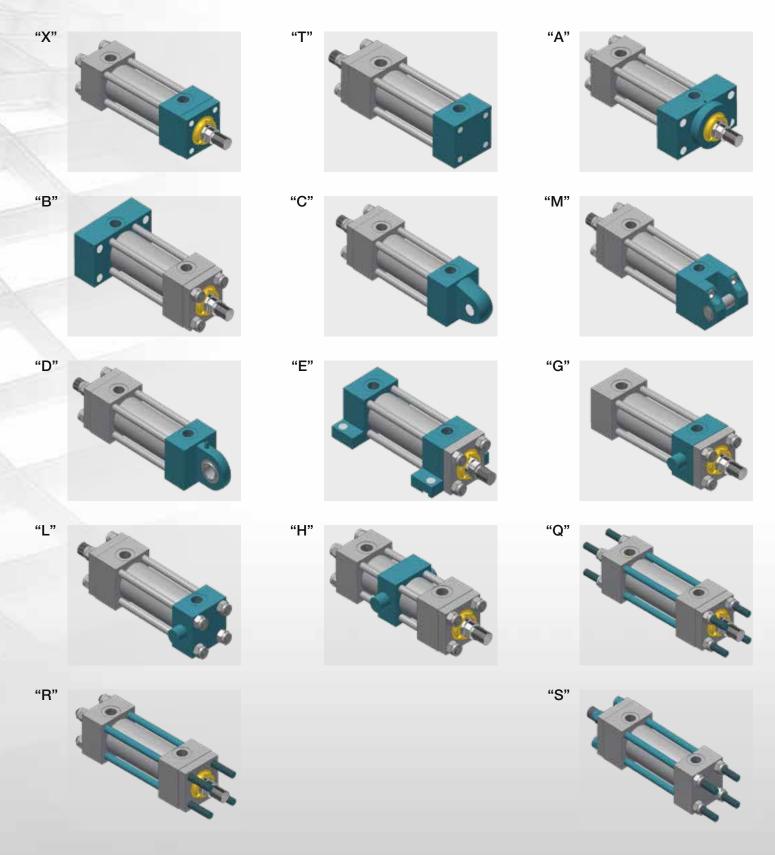

Tab. 3.2

Ancoraggio	Collegamento stelo	Montaggio	Fattore di corsa	Ancoraggio	Collegamento stelo	Montaggio	Fattore di corsa
D. M. O.	Snodato e supportato		4		Fisso e supportato		2
D - M - C	Snodato e guidato rigidamente		2	A - X - R - Q	Fisso e gui- dato rigida- mente		0,5
	Snodato e supportato		3		Snodato e guidato rigidamente		0,7
G-H-L	Snodato e guidato rigidamente		1,5		Fisso e supportato		4
	Fisso e gui- dato rigida- mente		0,5	B-T-S-Q	Fisso e gui- dato rigida- mente		1
E	Fisso e supportato		2		Snodato e guidato rigidamente		1,5
	Snodato e guidato rigidamente		0,7	effettiva d		li corsa FC per la cava il parametro	

Tab. 3.3

Ricavare sul diagramma il punto d'intersezione tra il valore **LI "Lunghezza Ideale"** (mm) e il valore **F1 "spinta massima"** (kN) previsto per il cilindro.

Lo stelo che soddisfa la verifica del carico di punta è quello corrispondente alla curva immediatamente superiore al punto di intersezione trovato sul diagramma.


4 DOPPIO STELO

Qualora le esigenze lo richiedano, è possibile la realizzazione di cilindri oleodinamici a doppio effetto con doppio stelo. E' necessario tenere presente che con doppio stelo di uguale diametro (a parità di alesaggio) la forza di spinta F1 è uguale alla forza di tiro F2; se gli steli hanno differenti diametri (a parità d'alesaggio) è necessario calcolare per ognuno la forza di spinta F1 e di tiro F2 (vedi Tab. 2.1).

5 ANCORAGGIO

Sono previste 14 tipologie di ancoraggio (a richiesta è possibile la realizzazione di ancoraggi speciali)

6 FRENATURE

A richiesta, sono fornibili dei dispositivi di frenatura ricavati nelle testate e regolabili tramite uno spillo (escluso Ø25). Essi hanno il compito di rallentare la velocità della massa in movimento in prossimità di fine corsa.

E' opportuno non usare le testate del cilindro come fine corsa del carico spostato. Si consiglia l'uso di fermi meccanici esterni: in caso contrario si potrebbero verificare danni all'organo idraulico in breve tempo.

I sistemi di frenatura, durante la fase di rallentamento, sono sottoposti a pressioni molto superiori alla pressione di lavoro, perciò sono costruiti con appositi materiali temprati e rettificati atti a garantire un'ottima frenatura anche dopo migliaia di cicli.

La tabella sottostante indica la lunghezza di frenatura teorica relativa agli alesaggi dei cilindri.

Tab. 6.1										
Alesaggio	25	32	40	50	63	80	100	125	160	200
Anteriore (mm)	10	12	20	20	20	25	25	28	28	30
Posteriore (mm)	10	12	20	20	20	25	25	28	28	30

L'efficacia delle frenature dipende da molteplici variabili (massa, velocità, temperatura, ...) pertanto le quote sopra indicate sono relative alla lunghezza meccanica dell'ammortizzatore, da non confondere con la lunghezza reale di ammortizzo.

7 CORSA

Sono possibili corse variabili a seconda degli alesaggi e della serie costruttiva (vedi pag. 7). Corsa minima di 20 mm per i cilindri magnetici MD onde evitare l'interferenza del campo magnetico nei sensori.

Per corse particolarmente lunghe porre attenzione al tipo d'ancoraggio, onde evitare carichi radiali e momenti flettenti che possono interagire sulla guida stelo-pistone creando usure precoci.

In relazione all'alesaggio e al tipo di ancoraggio con corse molto lunghe, sono inseriti esternamente sulla camicia dei ROMPI -TRATTA per mantenere in tensione i tiranti e rendere compatto l'assemblaggio del cilindro.

8 DISTANZIALI

Con corse superiori a 1000 mm viene previsto il montaggio di appositi distanziali all'interno del cilindro aumentando così la guida dello stelo e del pistone, onde evitare usure indesiderate.

Tab. 8.1				
Corse (mm)	1000 - 1500	1500 - 2000	2000 - 2500	> 2500
Distanziale (mm)	50	100	150	Interpellare il nostro Ufficio Tecnico

9 GUARNIZIONI DI TENUTA

STANDARD = GOMMA NITRILICA - POLIURETANO

Usate nella maggior parte della tipologia di cilindri, garantiscono ottima tenuta anche in stazionamenti intermedi; assicurano una lunga durata e mantengono una buona efficienza alle medie temperature fino a 80° C. Accettabile coefficiente d'attrito, garantiscono buone velocità di traslazione fino a 0.4 m/s.

VITON® (W) = ELASTOMERI, ETILENE PROPILENE

Danno affidabilità di tenuta sia a basse che ad alte temperature (-20 / +150° C); ottima la durata nel tempo; permettono una buona velocità di traslazione fino a 3 m/s; particolarmente adatte a fluidi sempre più frequentemente usati come acqua-glicole (HFC). Possono ammettere dei trafilamenti a basse pressioni; non idonee a stazionamenti intermedi.

BASSO ATTRITO (Y) = TERMOPLASTICI P.T.F.E. CARICATI IN BRONZO

Adatte ad alte velocità fino a 3 m/s e a basse velocità da 0.01 m/s; buona la resistenza alle medie temperature fino a 90° C; ottima la durata nel tempo. Data la poca elasticità possono ammettere dei trafilamenti pertanto non sono adatte a stazionamenti intermedi.

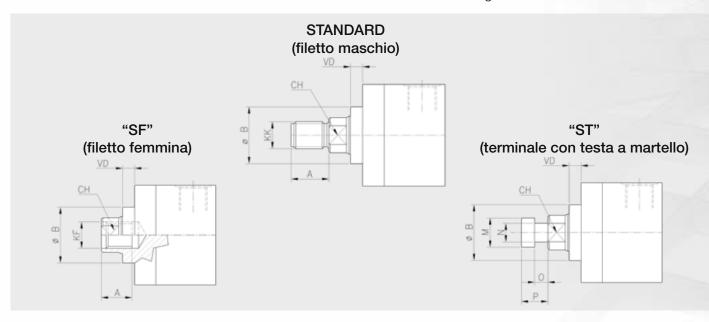
Per l'utilizzo di fluidi, temperature, velocità e pressioni particolari interpellare il nostro Ufficio Tecnico.

CONNESSIONI

Sono realizzate per alimentare idraulicamente il cilindro da entrambi i lati e dimensionate per una velocità massima di traslazione di 0.5 m/s. A richiesta possono essere eseguite nell'orientamento indicato in figura o maggiorate come da tabella sottostante.

Serie	Connessioni maggiorate								
Selle	Alesaggio	Anteriore	Posteriore						
	25 - 32	/	G 3/8"						
	40	/	G 1/2"						
CD	50 - 63	/	G 3/4"						
MD DK	80 - 100	/	G 1"						
	125 - 160	G 1 - 1/4"	G 1 - 1/4"						
	200	G 1 - 1/2"	G 1 - 1/2"						

Non valide per ancoraggio "E"



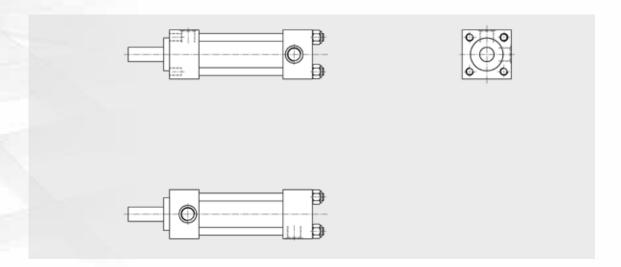
- · Alimentazioni standard: pos. 1
- · Frenature standard: pos. 3 escluso ancoraggio "E": pos. 2 (doppio stelo in pos. 2 e 4)
- · Per ancoraggio "G" e "L" non possibile con alimentazione in pos. 2 e 4

10 ESTREMITA' STELO

Le estremità dello stelo sono realizzate secondo normativa ISO 6020/2 nelle seguenti modalità:

Tab.	10.1								
Stelo	А	B f9	CH	KK	KF	М	N	0	Р
12	14	24	10	M10x1,25	M8x1	11	6,5	5	10
14	16	26	12	M12x1,25	M10x1,25	13	8	6	12
18	18	30	15	M14x1,5	M12x1,25	16	10	7	14
22	22	34	19	M16x1,5	M16x1,5	18	11	8	16
28	28	42	22	M20x1,5	M20x1,5	22	14	10	20
36	36	50	30	M27x2	M27x2	28	18	13	25
45	45	60	36	M33x2	M33x2	35	22	16	32
56	56	72	46	M42x2	M42x2	45	28	20	40
70	63	88	60	M48x2	M48x2	56	35	25	50
90	85	108	75	M64x3	M64x3	70	45	35	70
110	95	133	95	M80x3	M80x3				
140	112	163	120	M100x3	M100x3				

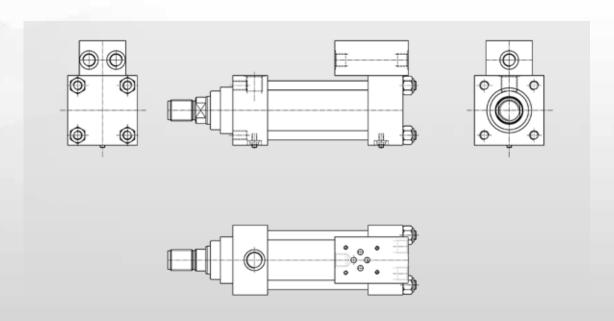
Pistone		25			32			40			50			63	
Stelo	12	-	18	14	18	22	18	22	28	22	28	36	28	36	45
VD		6			12			12			9			13	
Pistone		80			100			125			160			200	
Stelo	36	45	56	45	56	70	56	70	90	70	90	110	90	110	140


10.2 ESTREMITA' STELO DIN 24554

Sono realizzabili estremità con "filetto maschio" e "filetto femmina" secondo normativa DIN 24554. Consultare il nostro ufficio tecnico.

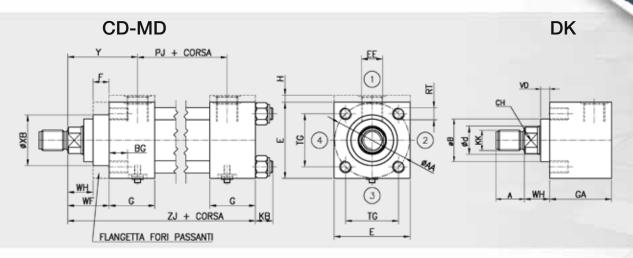
11 ESECUZIONE SPECIALE SX

Ogni tipo di esecuzione o variante speciale non specificato nel presente catalogo (stelo prolungato – estremità stelo – modifica ancoraggio – trattamenti superficiali – spurghi aria – ecc....) potrà essere richiesta al nostro Ufficio Tecnico che dopo lo studio dell'applicazione invierà un disegno da approvare.



PIASTRE INCORPORATE

Le piastre incorporate possono essere utilizzate per il montaggio di valvole di controllo con superfici di montaggio a partire dall'alesaggio 40.


Il montaggio avviene direttamente sulla testata posteriore del cilindro, in modo tale da ridurre i volumi d'olio tra la valvola e il cilindro ottenendo così una risposta immediata del pilotaggio.

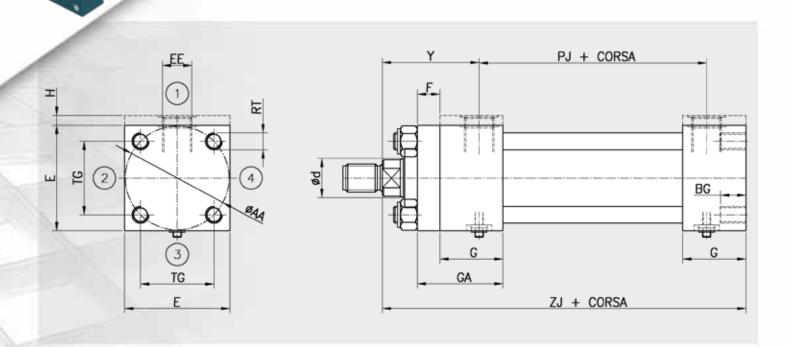
Per informazioni consultare il nostro Ufficio Tecnico.

ANCORAGGIO ISO MX5

	Ancoraggio X (ISOMX5) Alesaggio 25 32 40 50 63 80 100 125 160 200													
Alesaggio	25	32	40	50	63	80	100	125	160	200				
	12	14	18	22	28	36	45	56	70	90				
d (ø stelo)	-	18	22	28	36	45	56	70	90	110				
	18	22	28	36	45	56	70	90	110	140				
AA	40	47	59	74	91	117	137	178	219	269				
BG	12	15	16	18	18	24	24	30	35	40				
E	40	45	60	75	90	115	130	165	200	245				
EE	G1/4	G1/4	G3/8	G1/2	G1/2	G3/4	G3/4	G1	G1	G1 1/4				
F	10	10	10	16	16	20	22	-	-,/2	-				
G	32	35,5	46	45	45	52	55	65	70	92				
GA	-	-	-	-	-	-	-	87	95	117				
Н	5	5	-	-	-	-	-	-	-	-				
KB	7	10	13	17	17	23	23	30	35	37				
PJ +	49 (*)	47 (*)	58 (*)	61 (*)	64 (*)	77 (*)	78 (*)	117	130	165				
RT	M5	M6	M8	M12	M12	M16	M16	M22	M27	M30				
TG	28,3	33,2	41,7	52,3	64,3	82,7	96,9	125,9	154,9	190,2				
WF	25	35	35	41	48	51	57	-	-	-				
WH	15	25	25	25	32	31	35	35	32	32				
XB (*) f 9	30	34	42	50	60	72	88	-	-					
Υ	45 (*)	58 (*)	65 (*)	69 (*)	76 (*)	82 (*)	91 (*)	86	86	98				
ZJ +	114	128	153	159	168	190	203	232	245	299				

Pistone		25			32			40		50			63		
Stelo	12	-	18	14	18	22	18	22	28	22	28	36	28	36	45
B f9	24	-	30	26	30	34	30	34	42	34	42	50	42	50	60
VD		6		12			12		9			13			

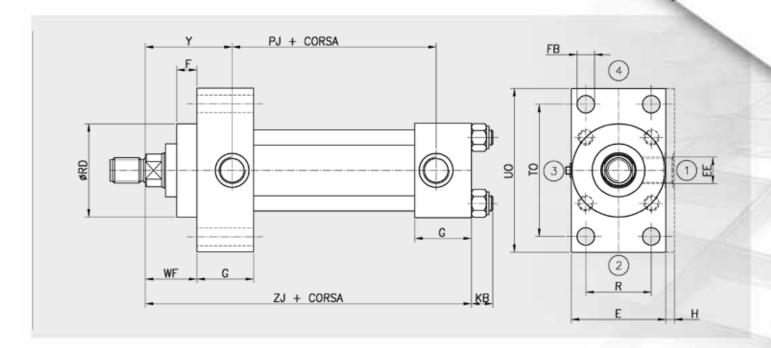
Pistone		80			100			125		160			200		
Stelo	36	45	56	45	56	70	56	70	90	70	90	110	90	110	140
B f9	50	60	72	60	72	88	72	88	108	88	108	133	108	133	163
VD		9		10		10		7			7				


(*) = Quota non conforme con ISO 6020/2 - 1991

Inserire flangetta di chiusura (quota F) per rendere conformi alle quote WH e B a norma ISO 6020/2 Cilindri serie DK: quote F e G sostituite da GA

T

ANCORAGGIO ISO MX6



			An	coraggio T	(ISOMX6)					
Alesaggio	25	32	40	50	63	80	100	125	160	200
	12	14	18	22	28	36	45	56	70	90
d (ø stelo)	-	18	22	28	36	45	56	70	90	110
	18	22	28	36	45	56	70	90	110	140
AA	40	47	59	74	91	117	137	178	219	269
BG	12	15	16	18	18	24	24	30	35	40
E	40	45	60	75	90	115	130	165	200	245
EE	G1/4	G1/4	G3/8	G1/2	G1/2	G3/4	G3/4	G1	G1	G1 1/4
F	10	10	10	16	16	20	22	-	-	-
G	32	35,5	46	45	45	52	55	65	70	92
GA	-	-	-	-	-	-	-	87	95	117
Н	5	5	-	-	-	~	-	-	-	-
PJ+	49 (*)	47 (*)	58 (*)	61 (*)	64 (*)	77 (*)	78 (*)	117	130	165
RT	M5	M6	M8	M12	M12	M16	M16	M22	M27	M30
TG	28,3	33,2	41,7	52,3	64,3	82,7	96,9	125,9	154,9	190,2
Υ	45 (*)	58 (*)	65 (*)	69 (*)	76 (*)	82 (*)	91 (*)	86	86	98
ZJ +	114	128	153	159	168	190	203	232	245	299

A

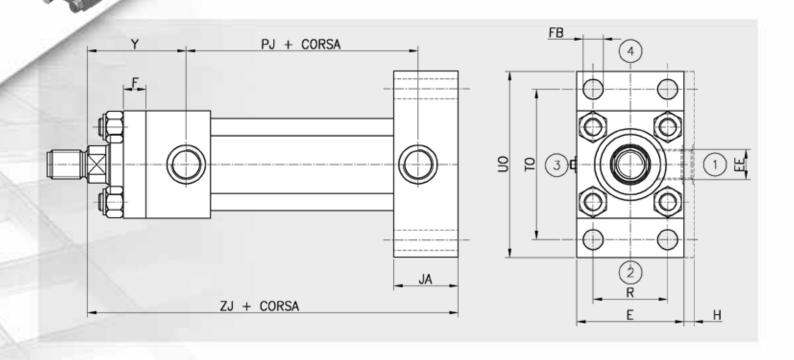
ANCORAGGIO ISO ME5

			An	coraggio A	(ISO ME5)					
Alesaggio	25	32	40	50	63	80	100	125	160	200
	12	14	18	22	28	36	45	56	70	90
d (ø stelo)	-	18	22	28	36	45	56	70	90	110
	18	22	28	36	45	56	70	90	110	140
E	40	45	60	75	90	115	130	165	200	245
EE	G1/4	G1/4	G3/8	G1/2	G1/2	G3/4	G3/4	G1	G1	G1 1/4
F	10	10	10	16	16	20	22	22	25	25
FB	5,5	6,6	11	14	14	18	18	22	26	33
G	32	35,5	46	45	45	52	55	65	70	92
Н	5	5	-	-	-	-	-	-	-	-
КВ	7	10	13	17	17	23	23	30	35	37
PJ+	49 (*)	47 (*)	58 (*)	61 (*)	64 (*)	77 (*)	78 (*)	117	130	165
R	27	33	41	52	65	83	97	126	155	190
RD f8	38	42	62	74	88 (**)	105 (**)	125 (**)	150 (**)	170 (**)	210 (**)
ТО	51	58	87	105	117	149	162	208	253	300
UO	65	70	110	130	145	180	200	250	300	360
WF	25	35	35	41	48	51	57	57	57	57
Υ	45 (*)	58 (*)	65 (*)	69 (*)	76 (*)	82 (*)	91 (*)	86	86	98
ZJ +	114	128	153	159	168	190	203	232	245	299

(*) = Quota non conforme con ISO 6020/2 - 1991

(**) Quota unificata al diametro superiore come da ISO 6020/2 con anello di centraggio RD.

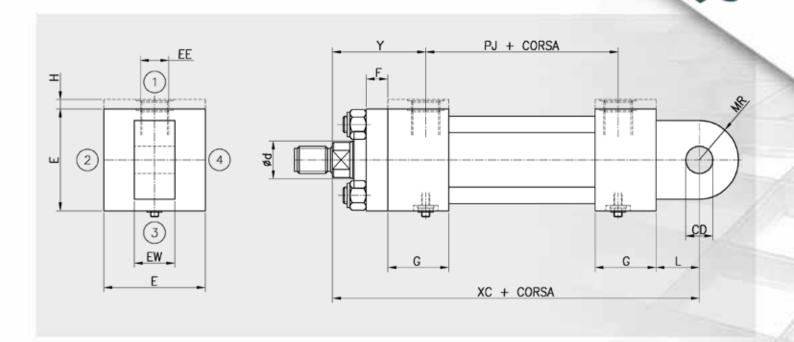
Quota originale XB pag. 19 (tipo X)


Da realizzare la sede di centraggio del cilindro (quota RD) con lunghezza (quota F) + 0.2 mm. per conferire una maggior compattezza di tutto il cilindro, questo migliora notevolmente le prestazioni e durata dello stesso.

Cilindri serie DK: quote F e G sostituite da GA

B

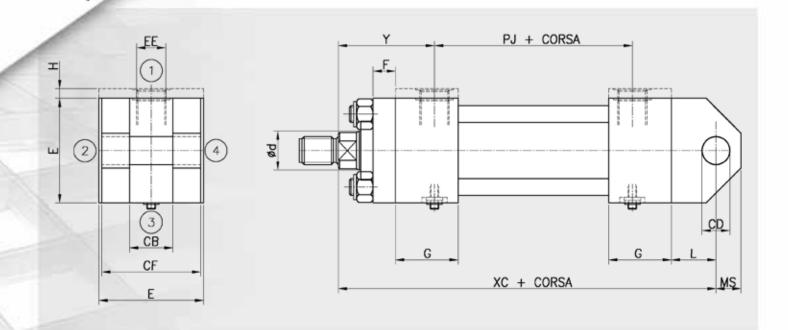
ANCORAGGIO ISO ME6



			And	coraggio B	(ISO ME6)					
Alesaggio	25	32	40	50	63	80	100	125	160	200
	12	14	18	22	28	36	45	56	70	90
d (ø stelo)	-	18	22	28	36	45	56	70	90	110
	18	22	28	36	45	56	70	90	110	140
E	40	45	60	75	90	115	130	165	200	245
EE	G1/4	G1/4	G3/8	G1/2	G1/2	G3/4	G3/4	G1	G1	G1 1/4
F	10	10	10	16	16	20	22	22	25	25
FB	5,5	6,6	11	14	14	18	18	22	26	33
G	32	35,5	46	45	45	52	55	65	70	92
GA	-	-	-	-	-	-	-	87	95	117
Н	5	5	-	-	-	-	-	-	-	-
JA	32	35,5	46	45	45	52	55	65	70	92
PJ+	49 (*)	47 (*)	58 (*)	61 (*)	64 (*)	77 (*)	78 (*)	117	130	165
R	27	33	41	52	65	83	97	126	155	190
TO	51	58	87	105	117	149	162	208	253	300
UO	65	70	110	130	145	180	200	250	300	360
Y	45 (*)	58 (*)	65 (*)	69 (*)	76 (*)	82 (*)	91 (*)	86	86	98
ZJ +	114	128	153	159	168	190	203	232	245	299

C

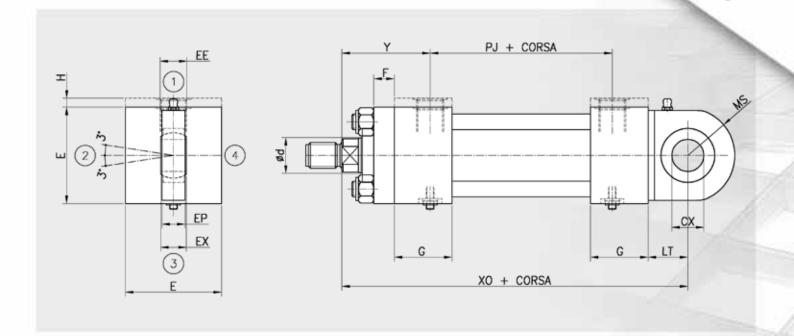
ANCORAGGIO ISO MP3



			And	coraggio C	(ISO MP3)					
Alesaggio	25	32	40	50	63	80	100	125	160	200
	12	14	18	22	28	36	45	56	70	90
d (ø stelo)	-	18	22	28	36	45	56	70	90	110
	18	22	28	36	45	56	70	90	110	140
CD	10	12	14	20	20	28	36	45	56	70
E	40	45	60	75	90	115	130	165	200	245
EE	G1/4	G1/4	G3/8	G1/2	G1/2	G3/4	G3/4	G1	G1	G1 1/4
EW	12	16	20	30	30	40	50	60	70	80
F	10	10	10	16	16	20	22	22	25	25
G	32	35,5	46	45	45	52	55	65	70	92
GA	-	-	-	-	-	-	-	87	95	117
Н	5	5	-	-	-	-	-	-	-	-
L	13	19	19	32	32	39	54	57	63	82
MR max	12	17	17	29	29	34	50	53	59	78
PJ+	49 (*)	47 (*)	58 (*)	61 (*)	64 (*)	77 (*)	78 (*)	117	130	165
XC +	127	147	172	191	200	229	257	289	308	381
Υ	45 (*)	58 (*)	65 (*)	69 (*)	76 (*)	82 (*)	91 (*)	86	86	98

M

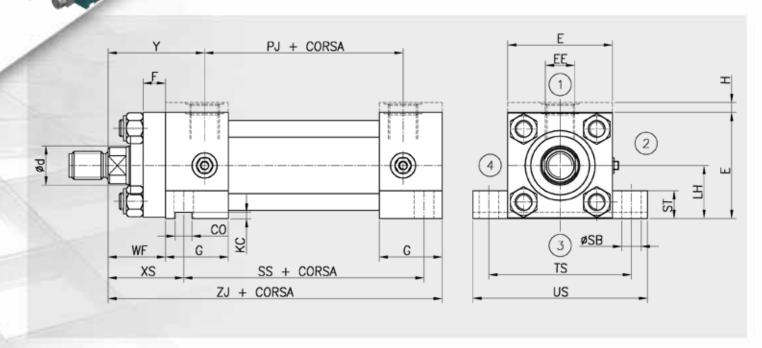
ANCORAGGIO ISO MP1



			And	coraggio M	(ISO MP1)					
Alesaggio	25	32	40	50	63	80	100	125	160	200
	12	14	18	22	28	36	45	56	70	90
d (ø stelo)	-	18	22	28	36	45	56	70	90	110
	18	22	28	36	45	56	70	90	110	140
СВ	16 (*)	16	20	30	30	40	50	64 (*)	80 (*)	80
CD	10	12	14	20	20	28	36	45	56	70
CF	40	45	60	74	90	110	130	164	200	240
E	40	45	60	75	90	115	130	165	200	245
EE	G1/4	G1/4	G3/8	G1/2	G1/2	G3/4	G3/4	G1	G1	G1 1/4
F	10	10	10	16	16	20	22	22	25	25
G	32	35,5	46	45	45	52	55	65	70	92
GA	-	•	-	-		-	-	87	95	117
Н	5	5	-	-	-	-	-	-	-	-
L	13	19	19	32	32	39	54	57	63	82
MS	12	11	16	18	18	31	46	43	57	68
PJ+	49 (*)	47 (*)	58 (*)	61 (*)	64 (*)	77 (*)	78 (*)	117	130	165
XC +	127	147	172	191	200	229	257	289	308	381
Υ	45 (*)	58 (*)	65 (*)	69 (*)	76 (*)	82 (*)	91 (*)	86	86	98

D

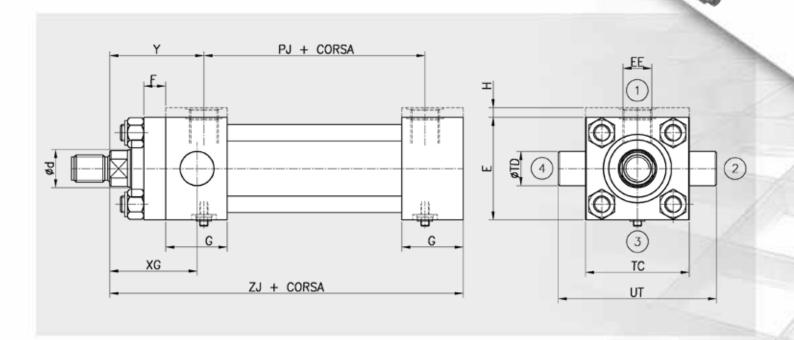
ANCORAGGIO ISO MP5



	Ancoraggio D (ISO MP5) Alesaggio 25 32 40 50 63 80 100 125 160 200												
Alesaggio	25	32	40	50	63	80	100	125	160	200			
	12	14	18	22	28	36	45	56	70	90			
d (ø stelo)	-	18	22	28	36	45	56	70	90	110			
	18	22	28	36	45	56	70	90	110	140			
CX	12	16	20	25	30	40	50	60	80	100			
E	40	45	60	75	90	115	130	165	200	245			
EE	G1/4	G1/4	G3/8	G1/2	G1/2	G3/4	G3/4	G1	G1	G1 1/4			
EP	9	12	14	18	20	24	30	38	47	58			
EX	10	14	16	20	22	28	35	44	55	70			
F	10	10	10	16	16	20	22	22	25	25			
G	32	35,5	46	45	45	52	55	65	70	92			
GA	-	-	-	-	-	-	-	87	95	117			
Н	5	5	-	-	-	-	-	-	-	-			
LT	16	20	25	31	38	48	58	72	92	116			
MS	20	25	30	35	40	55	65	90	100	135			
PJ+	49 (*)	47 (*)	58 (*)	61 (*)	64 (*)	77 (*)	78 (*)	117	130	165			
XO	130	148	178	190	206	238	261	304	337	415			
Υ	45 (*)	58 (*)	65 (*)	69 (*)	76 (*)	82 (*)	91 (*)	86	86	98			

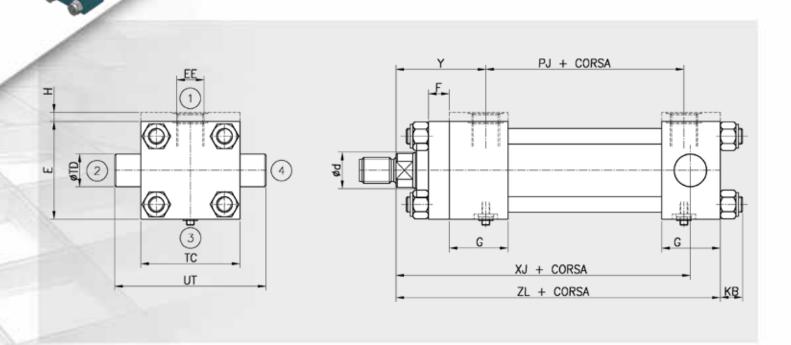
E

ANCORAGGIO ISO MS2

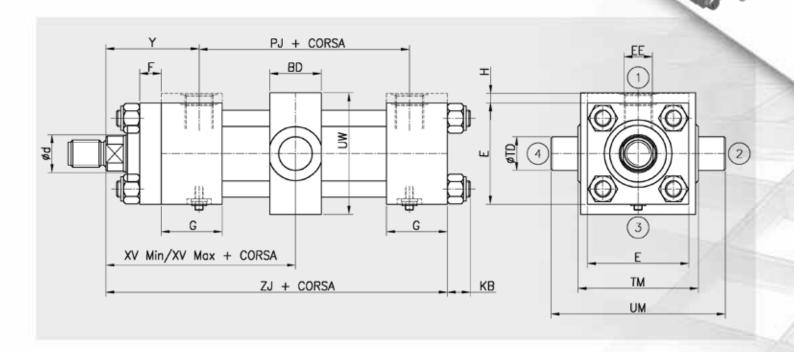


12										
Alesaggio	25	32	40	50	63	80	100	125	160	200
	12	14	18	22	28	36	45	56	70	90
d (ø stelo)	-	18	22	28	36	45	56	70	90	110
	18	22	28	36	45	56	70	90	110	140
CO (H8)	-	-	12	12	16	16	16	20	30	40
Е	40	45	60	75	90	115	130	165	200	245
EE	G1/4	G1/4	G3/8	G1/2	G1/2	G3/4	G3/4	G1	G1	G1 1/4
F	10	10	10	16	16	20	22	22	25	25
G	32	35,5	46	45	45	52	55	65	70	92
GA	-	-	-	-	-	-	-	87	95	117
Н	5	5	-	-	-	-	-	-	-	-
KC	-	-	4	4,5	4,5	5	6	6	8	8
LH h10	19	22	31	37	44	57	63	82	101	122
PJ +	49 (*)	47 (*)	58 (*)	61 (*)	64 (*)	77 (*)	78 (*)	117	130	165
SB	6,6	9	11	14	18	18	26	26	33	39
SS +	73	73	98	92	86	105	102	131	130	172
ST	8,5	12,5	12,5	19	26	26	32	32	38	44
TS	54	63	83	102	124	149	172	210	260	311
US	72	84	103	127	161	186	216	254	318	381
WF	25	35	35	41	48	51	57	57	57	57
XS	33	45	45	54	65	68	79	79	86	92
Y	45 (*)	58 (*)	65 (*)	69 (*)	76 (*)	82 (*)	91 (*)	86	86	98
ZJ +	114	128	153	159	168	190	203	232	245	299

G

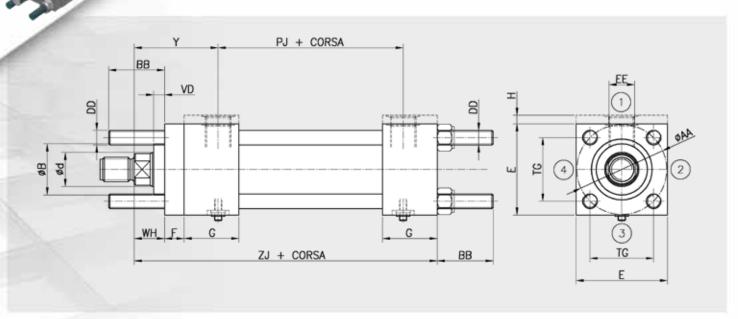

ANCORAGGIO ISO MT1

			And	coraggio G	(ISO MT1)					
Alesaggio	25	32	40	50	63	80	100	125	160	200
	12	14	18	22	28	36	45	56	70	90
d (ø stelo)	-	18	22	28	36	45	56	70	90	110
	18	22	28	36	45	56	70	90	110	140
E	40	45	60	75	90	115	130	165	200	245
EE	G1/4	G1/4	G3/8	G1/2	G1/2	G3/4	G3/4	G1	G1	G1 1/4
F	10	10	10	16	16	20	22	22	25	25
G	32	35,5	46	45	45	52	55	65	70	92
GA	-	-	-	-	-	-	-	87	95	117
Н	5	5	-	-	-	-	-	-	-	-
PJ+	49 (*)	47 (*)	58 (*)	61 (*)	64 (*)	77 (*)	78 (*)	117	130	165
TC	38	44	63	76	89	114	127	165	203	241
TD f8	12	16	20	25	32	40	50	63	80	100
UT	58	68	95	116	139	178	207	265	329	401
XG	44	54	57	64	70	76	71	75	75	85
Υ	45 (*)	58 (*)	65 (*)	69 (*)	76 (*)	82 (*)	91 (*)	86	86	98
ZJ +	114	128	153	159	168	190	203	232	245	299


ANCORAGGIO ISO MT2

	Ancoraggio L (ISO MT2) Alesaggio 25 32 40 50 63 80 100 125 160 200													
Alesaggio	25	32	40	50	63	80	100	125	160	200				
	12	14	18	22	28	36	45	56	70	90				
d (ø stelo)	-	18	22	28	36	45	56	70	90	110				
	18	22	28	36	45	56	70	90	110	140				
E	40	45	60	75	90	115	130	165	200	245				
EE	G1/4	G1/4	G3/8	G1/2	G1/2	G3/4	G3/4	G1	G1	G1 1/4				
F	10	10	10	16	16	20	22	22	25	25				
G	32	35,5	46	45	45	52	55	65	70	92				
GA	-	-	-	-	-	-	-	87	95	117				
Н	5	5	-	-	-	-	-	-	-	-				
KB	7	10	13	17	17	23	23	30	35	37				
PJ+	49 (*)	47 (*)	58 (*)	61 (*)	64 (*)	77 (*)	78 (*)	117	130	165				
TC	38	44	63	76	89	114	127	165	203	241				
TD f8	12	16	20	25	32	40	50	63	80	100				
UT	58	68	95	116	139	178	207	265	329	401				
XJ +	95	109	131	136	146	165	177	214	227	271				
Υ	45 (*)	58 (*)	65 (*)	69 (*)	76 (*)	82 (*)	91 (*)	86	86	98				
ZL +	114	128	153	159	168	190	203	254	270	324				

ANCORAGGIO ISO MT4



			An	coraggio H	(ISO MT4)					
Alesaggio	25	32	40	50	63	80	100	125	160	200
	12	14	18	22	28	36	45	56	70	90
d (ø stelo)	-	18	22	28	36	45	56	70	90	110
	18	22	28	36	45	56	70	90	110	140
BD	20	25	29	38	48	58	68	88	108	125
E	40	45	60	75	90	115	130	165	200	245
EE	G1/4	G1/4	G3/8	G1/2	G1/2	G3/4	G3/4	G1	G1	G1 1/4
F	10	10	10	16	16	20	22	22	25	25
G	32	35,5	46	45	45	52	55	65	70	92
GA	-	-	-	-	-	-	-	87	95	117
Н	5	5	-	-	-	-	-	-	-	-
КВ	7	10	13	17	17	23	23	30	35	37
PJ +	49 (*)	47 (*)	58 (*)	61 (*)	64 (*)	77 (*)	78 (*)	117	130	165
TD f8	12	16	20	25	32	40	50	63	80	100
TM	48	55	76	89	100	127	140	178	215	279
UM	68	79	108	129	150	191	220	278	341	439
UW	45	50	70	90	100	130	140	180	215	300
XV min	67	83	96	106	118	133	147	166	182	213
XV max +	72	80	92	94	98	108	113	123	120	142
Υ	45 (*)	58 (*)	65 (*)	69 (*)	76 (*)	82 (*)	91 (*)	86	86	98
ZJ +	114	128	153	159	168	190	203	232	245	299

Q

ANCORAGGIO ISO MX1

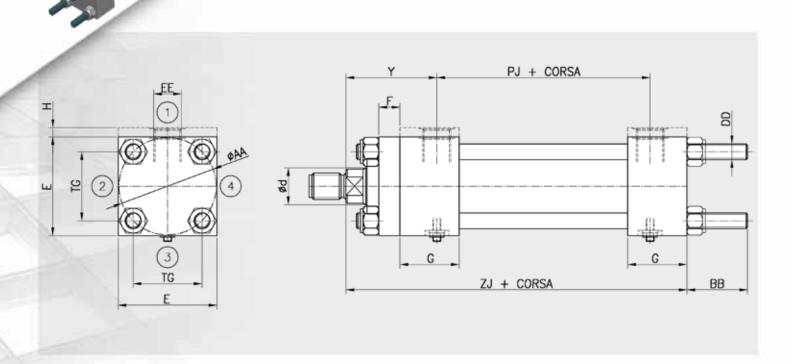
	Ancoraggio Q (ISO MX1)													
Alesaggio	25	32	40	50	63	80	100	125	160	200				
	12	14	18	22	28	36	45	56	70	90				
d (ø stelo)	-	18	22	28	36	45	56	70	90	110				
	18	22	28	36	45	56	70	90	110	140				
AA	40	47	59	74	91	117	137	178	219	269				
BB	19	24	35	46	46	59	59	81	92	115				
DD	M5x0,8	M6x1	M8x1	M12x1,25	M12x1,25	M16x1,5	M16x1,5	M22x1,5	M27x2	M30x2				
E	40	45	60	75	90	115	130	165	200	245				
EE	G1/4	G1/4	G3/8	G1/2	G1/2	G3/4	G3/4	G1	G1	G1 1/4				
F	10	10	10	16	16	20	22	22	25	25				
G	32	35,5	46	45	45	52	55	65	70	92				
GA	-	-	-	-	-	-	-	87	95	117				
Н	5	5	-	-	-	-	-	-	-	-				
PJ+	49 (*)	47 (*)	58 (*)	61 (*)	64 (*)	77 (*)	78 (*)	117	130	165				
TG	28,3	33,2	41,7	52,3	64,3	82,7	96,9	125,9	154,9	190,9				
WH	15	25	25	25	32	31	35	35	32	32				
Υ	45 (*)	58 (*)	65 (*)	69 (*)	76 (*)	82 (*)	91 (*)	86	86	98				
ZJ +	114	128	153	159	168	190	203	232	245	299				

Pistone	25				32			40			50			63	
Stelo	12	-	18	14	18	22	18	22	28	22	28	36	28	36	45
B f9	24	-	30	26	30	34	30	34	42	34	42	50	42	50	60
VD		6		12				12			9			13	

Pistone		80			100			125			160			200	
Stelo	36	45	56	45	56	70	56	70	90	70	90	110	90	110	140
B f9	50	60	72	60	72	88	72	88	108	88	108	133	108	133	163
VD	9			10			10			7			7		

R

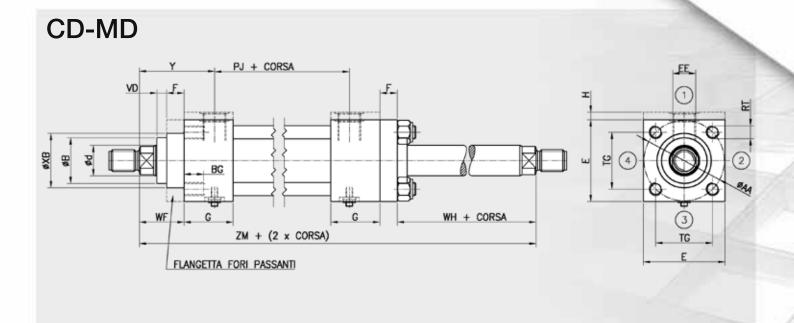
ANCORAGGIO ISO MX3


			An	coraggio R	(ISO MX3)					
Alesaggio	25	32	40	50	63	80	100	125	160	200
	12	14	18	22	28	36	45	56	70	90
d (ø stelo)	-	18	22	28	36	45	56	70	90	110
	18	22	28	36	45	56	70	90	110	140
AA	40	47	59	74	91	117	137	178	219	269
BB	19	24	35	46	46	59	59	81	92	115
DD	M5x0,8	M6x1	M8x1	M12x1,25	M12x1,25	M16x1,5	M16x1,5	M22x1,5	M27x2	M30x2
Е	40	45	60	75	90	115	130	165	200	245
EE	G1/4	G1/4	G3/8	G1/2	G1/2	G3/4	G3/4	G1	G1	G1 1/4
F	10	10	10	16	16	20	22	22	25	25
G	32	35,5	46	45	45	52	55	65	70	92
GA	-	-	-	-	-	-	-	87	95	117
Н	5	5	-	-	-	-	-	-	-	6-1
KB	7	10	13	17	17	23	23	30	35	37
PJ+	49 (*)	47 (*)	58 (*)	61 (*)	64 (*)	77 (*)	78 (*)	117	130	165
TG	28,3	33,2	41,7	52,3	64,3	82,7	96,9	125,9	154,9	190,9
WH	15	25	25	25	32	31	35	35	32	32
Υ	45 (*)	58 (*)	65 (*)	69 (*)	76 (*)	82 (*)	91 (*)	86	86	98
ZJ +	114	128	153	159	168	190	203	232	245	299

Pistone		25			32			40			50			63	
Stelo	12	-	18	14	18	22	18	22	28	22	28	36	28	36	45
B f9	24	-	30	26	30	34	30	34	42	34	42	50	42	50	60
VD		6			12			12			9			13	
					100										
Pistone		80			100			125			160			200	
Pistone Stelo	36	80 45	56	45	100 56	70	56	125 70	90	70	160 90	110	90	200 110	140
	36 50		56 72	45 60		70 88	56 72		90 108	70 88		110 133	90		140 163

S

ANCORAGGIO ISO MX2



			An	coraggio S	(ISOMX2)					
Alesaggio	25	32	40	50	63	80	100	125	160	200
	12	14	18	22	28	36	45	56	70	90
d (ø stelo)	-	18	22	28	36	45	56	70	90	110
	18	22	28	36	45	56	70	90	110	140
AA	40	47	59	74	91	117	137	178	219	269
ВВ	19	24	35	46	46	59	59	81	92	115
DD	M5x0,8	M6x1	M8x1	M12x1,25	M12x1,25	M16x1,5	M16x1,5	M22x1,5	M27x2	M30x2
E	40	45	60	75	90	115	130	165	200	245
EE	G1/4	G1/4	G3/8	G1/2	G1/2	G3/4	G3/4	G1	G1	G1 1/4
F	10	10	10	16	16	20	22	22	25	25
G	32	35,5	46	45	45	52	55	65	70	92
GA	-	-	-	-	-	-	-	87	95	117
Н	5	5	-	-	-	-	-	-	-	-
KB	7	10	13	17	17	23	23	30	35	37
PJ+	49 (*)	47 (*)	58 (*)	61 (*)	64 (*)	77 (*)	78 (*)	117	130	165
TG	28,3	33,2	41,7	52,3	64,3	82,7	96,9	125,9	154,9	190,9
WH	15	25	25	25	32	31	35	35	32	32
Υ	45 (*)	58 (*)	65 (*)	69 (*)	76 (*)	82 (*)	91 (*)	86	86	98
ZJ +	114	128	153	159	169	190	203	232	245	299

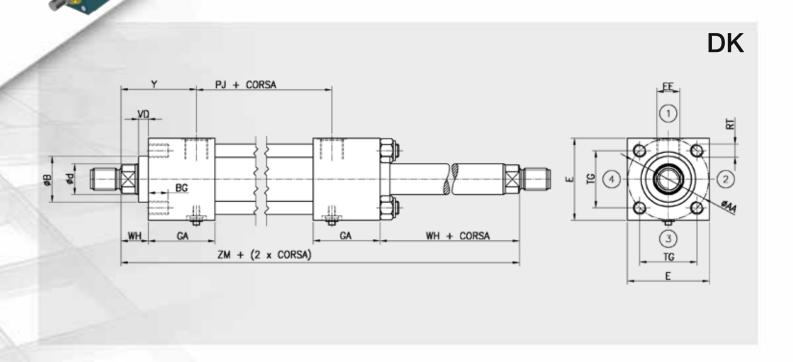
ANCORAGGIO ISO MX5 DOPPIO STELO

Ancoraggio doppio stelo X (CD - MD)													
Alesaggio	25	32	40	50	63	80	100						
	12	14	18	22	28	36	45						
d (ø stelo)	-	18	22	28	36	45	56						
	18	22	28	36	45	56	70						
AA	40	47	59	74	91	117	137						
BG	12	15	18	18	18	24	24						
Е	40	45	60	75	90	115	130						
EE	G1/4	G1/4	G3/8	G1/2	G1/2	G3/4	G3/4						
F	10	10	10	16	16	20	22						
G	32	35,5	46	45	45	52	55						
Н	5	5	-	-	-	-	- C- 0						
PJ +	49 (*)	47 (*)	58 (*)	61 (*)	64 (*)	77 (*)	78 (*)						
RT	M5	M6	M8	M12	M12	M16	M16						
TG	28,3	33,2	41,7	52,3	64,3	82,7	96,9						
WF	25	35	35	41	48	51	57						
WH	15	25	25	25	32	31	35						
XB (*) f9	30	34	42	50	60	72	88						
Y	45 (*)	58 (*)	65 (*)	69 (*)	76 (*)	82 (*)	91 (*)						
ZM + (2x)	139	163	188	200	216	241	260						

Pistone		25			32			40			50			63			80			100	
Stelo	12	-	18	14	18	22	18	22	28	22	28	36	28	36	45	36	45	56	45	56	70
B f9	24	-	30	26	30	34	30	34	42	34	42	50	42	50	60	50	60	72	60	72	88
VD		6			12			12			9			13			9			10	

(*) = Quota non conforme con ISO 6020/2 - 1991

Inserire flangetta di chiusura per rendere conformi le quote WF e centraggio "B" (vedi pag. 17)

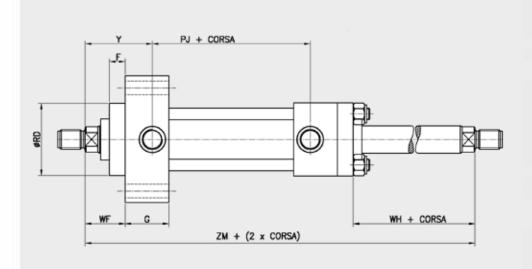

(2x) = doppia corsa

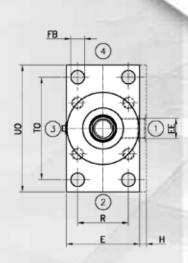
Cilindri serie DK: quote F e G sostituite da GA

X

ANCORAGGIO ISO MX5 DOPPIO STELO

	Ancoraggio do	pppio stelo X (DK)	
Alesaggio	125	160	200
	56	70	90
d (ø stelo)	70	90	110
	90	110	140
AA	178	219	269
BG	30	35	35
E	165	200	245
EE	G1	G1	G1 1/4
F	22	25	25
GA	87	95	117
PJ +	117	130	165
RT	M22	M27	M30
TG	125,9	154,9	190,2
WH	35	32	32
Y	86	86	98
ZM + (2x)	289	302	356


Pistone		125			160			200	
Stelo	56	70	90	70	90	110	90	110	140
B f9	72	88	108	88	108	133	108	133	163
VD	10				7			7	


(*) = Quota non conforme con ISO 6020/2 – 1991 (2x) = doppia corsa Cilindri serie DK: quote F e G sostituite da GA

A

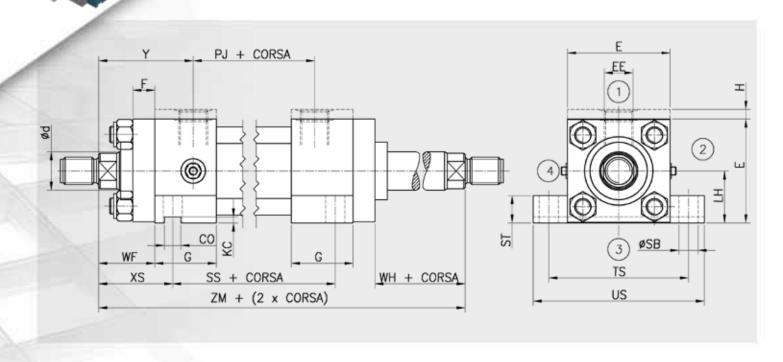
ANCORAGGIO ISO ME5 DOPPIO STELO

			Ance	oraggio do _l	opio stelo A					
Alesaggio	25	32	40	50	63	80	100	125	160	200
	12	14	18	22	28	36	45	56	70	90
d (ø stelo)	-	18	22	28	36	45	56	70	90	110
	18	22	28	36	45	56	70	90	110	140
Е	40	45	60	75	90	115	130	165	200	245
EE	G1/4	G1/4	G3/8	G1/2	G1/2	G3/4	G3/4	G1	G1	G1 1/4
F	10	10	10	16	16	20	22	22	25	25
FB	5,5	6,6	11	14	14	18	18	22	26	33
G	32	35,5	46	45	45	52	55	65	70	92
GA	-	-	-	-	-	-	-	87	95	117
Н	5	5	-	-	-	-	-	-	-	-
R	27	33	41	52	65	83	97	126	155	190
PJ+	49 (*)	47 (*)	58 (*)	61 (*)	64 (*)	77 (*)	78 (*)	117	130	165
RD f8	38	42	62	74	88 (**)	105 (**)	125 (**)	150 (**)	170 (**)	210 (**)
то	51	58	87	105	117	149	162	208	253	300
UO	65	70	110	130	145	180	200	250	300	360
WF	25	35	35	41	48	51	57	57	57	57
WH + (2x)	15	25	25	25	32	31	35	35	32	32
Y	45 (*)	58 (*)	65 (*)	69 (*)	76 (*)	82 (*)	91 (*)	86	86	98
ZM + (2x)	139	163	188	200	216	241	260	289	302	356

(*) = Quota non conforme con ISO 6020/2 - 1991

(2x) = doppia corsa

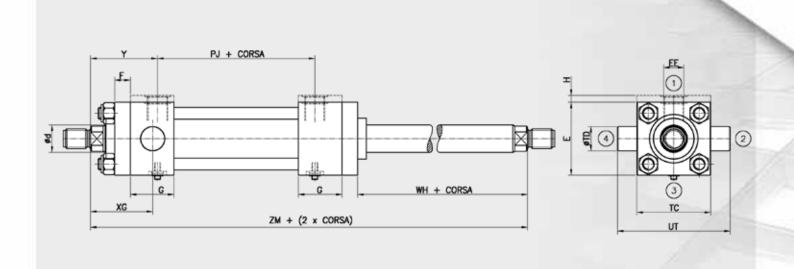
(**) Quota unificata al diametro superiore come da ISO 6020/2 con anello di centraggio RD.


Quota originale XB pag. 19 (tipo X)

Da realizzare la sede di centraggio del cilindro (quota RD) con lunghezza (quota F) + 0.2 per conferire una maggior compattezza di tutto il cilindro, questo migliora notevolmente le prestazioni e durata dello stesso.

Cilindri serie DK: quote F e G sostituite da GA

ANCORAGGIO ISO MS2 DOPPIO STELO


Ancoraggio doppio stelo E										
Alesaggio	25	32	40	50	63	80	100	125	160	200
	12	14	18	22	28	36	45	56	70	90
d (ø stelo)	-	18	22	28	36	45	56	70	90	110
	18	22	28	36	45	56	70	90	110	140
CO (H8)	-	-	12	12	16	16	16	20	30	40
E	40	45	60	75	90	115	130	165	200	245
EE	G1/4	G1/4	G3/8	G1/2	G1/2	G3/4	G3/4	G1	G1	G1 1/4
F	10	10	10	16	16	20	22	22	25	25
G	32	35,5	46	45	45	52	55	65	70	92
GA	-	-	-	-	-	-	-	87	95	117
Н	5	5	-	-	-	-	-	-	-	-
KC	-	-	4	4,5	4,5	5	6	6	8	8
LH h10	19	22	31	37	44	57	36	82	101	122
PJ+	49 (*)	47 (*)	58 (*)	61 (*)	64 (*)	77 (*)	78 (*)	117	130	165
SB	6,6	9	11	14	18	18	26	26	33	39
SS +	73	73	98	92	86	105	102	131	130	172
ST	8,5	12,5	12,5	19	26	26	32	32	38	44
TS	54	63	83	102	124	149	172	210	260	310
US	72	84	103	127	161	186	216	254	318	381
WF	25	35	35	41	48	51	57	57	57	57
WH	15	25	25	25	32	31	35	35	32	32
XS	33	45	45	54	65	68	79	79	86	92
Υ	45 (*)	58 (*)	65 (*)	69 (*)	76 (*)	82 (*)	91 (*)	86	86	98
ZM + (2x)	139	163	188	200	216	241	260	289	302	356

(*) = Quota non conforme con ISO 6020/2 - 1991

(2x) = doppia corsa Spillo di regolazione per frenature in pos.2 e 4 Cilindri serie DK: quote F e G sostituite da GA

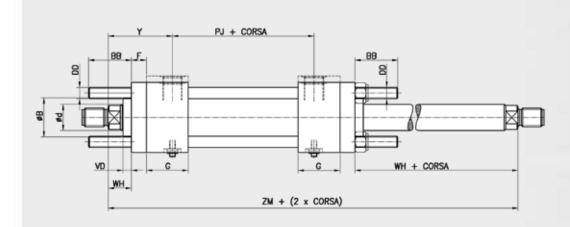
ANCORAGGIO ISO MT1 DOPPIO STELO

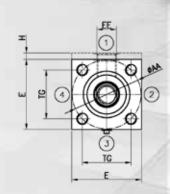
	Ancoraggio doppio stelo G														
Alesaggio	25	32	40	50	63	80	100	125	160	200					
	12	14	18	22	28	36	45	56	70	90					
d (ø stelo)	-	18	22	28	36	45	56	70	90	110					
	18	22	28	36	45	56	70	90	110	140					
Е	40	45	60	75	90	115	130	165	200	245					
EE	G1/4	G1/4	G3/8	G1/2	G1/2	G3/4	G3/4	G1	G1	G1 1/4					
F	10	10	10	16	16	20	22	22	25	25					
G	32	35,5	46	45	45	52	55	65	70	92					
GA	-	-	-	-	-	-	-	87	95	117					
Н	5	5	-	-	-	-	-	-	-	-					
PJ+	49 (*)	47 (*)	58 (*)	61 (*)	64 (*)	77 (*)	78 (*)	117	130	165					
TC	38	44	63	76	89	114	127	165	203	241					
TD f8	12	16	20	25	32	40	50	63	80	100					
UT	58	68	95	116	139	178	207	265	329	401					
WH	15	25	25	25	32	31	35	35	32	32					
XG	44	54	57	64	70	76	71	75	75	85					
Υ	45 (*)	58 (*)	65 (*)	69 (*)	76 (*)	82 (*)	91 (*)	86	86	98					
ZM + (2x)	139	163	188	200	216	241	260	289	302	356					

(*) = Quota non conforme con ISO 6020/2 - 1991 (2x) = doppia corsa Cilindri serie DK: quote F e G sostituite da GA

Н

ANCORAGGIO ISO MT4 DOPPIO STELO


Ancoraggio doppio stelo H													
Alesaggio	25	32	40	50	63	80	100	125	160	200			
	12	14	18	22	28	36	45	56	70	90			
d (ø stelo)	-	18	22	28	36	45	56	70	90	110			
	18	22	28	36	45	56	70	90	110	140			
BD	20	25	29	38	48	58	68	88	108	125			
E	40	45	60	75	90	115	130	165	200	245			
EE	G1/4	G1/4	G3/8	G1/2	G1/2	G3/4	G3/4	G1	G1	G1 1/4			
F	10	10	10	16	16	20	22	22	25	25			
G	32	35,5	46	45	45	52	55	65	70	92			
GA	-	-	-	-	-	-	-	87	95	117			
Н	5	5	-	-	-	-	-	-	-	-			
PJ+	49 (*)	47 (*)	58 (*)	61 (*)	64 (*)	77 (*)	78 (*)	117	130	165			
TD f8	12	16	20	25	32	40	50	63	80	100			
TM	48	55	76	89	100	127	140	178	215	279			
UM	68	79	108	129	150	191	220	278	341	439			
UW	45	50	70	90	100	130	140	180	215	300			
WH	15	25	25	25	32	31	35	35	32	32			
XV min	67	83	96	106	118	133	147	166	182	213			
XV max +	72	80	92	94	98	108	113	123	120	142			
Y	45 (*)	58 (*)	65 (*)	69 (*)	76 (*)	82 (*)	91 (*)	86	86	98			
ZM + (x2)	139	163	188	200	216	241	260	289	302	356			


(*) = Quota non conforme con ISO 6020/2 - 1991 (2x) = doppia corsa Cilindri serie DK: quote F e G sostituite da GA

Q

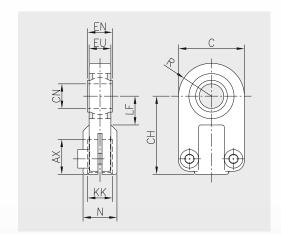
ANCORAGGIO ISO MX1 DOPPIO STELO

Ancoraggio doppio stelo Q														
Alesaggio	25	32	40	50	63	80	100	125	160	200				
	12	14	18	22	28	36	45	56	70	90				
d (ø stelo)	-	18	22	28	36	45	56	70	90	110				
	18	22	28	36	45	56	70	90	110	140				
AA	40	47	59	74	91	117	137	178	219	269				
ВВ	19	24	35	46	46	59	59	81	92	115				
DD	M5x0,8	M6x1	M8x1	M12x1,25	M12x1,25	M16x1,5	M16x1,5	M22x1,5	M27x2	M30x2				
E	40	45	60	75	90	115	130	165	200	245				
EE	G1/4	G1/4	G3/8	G1/2	G1/2	G3/4	G3/4	G1	G1	G1 1/4				
F	10	10	10	16	16	20	22	22	25	25				
G	32	35,5	46	45	45	52	55	65	70	92				
GA	-	-	-	-	-	-	-	87	95	117				
Н	5	5	-	-	-	-	-	-	-	0 -0				
PJ+	49 (*)	47 (*)	58 (*)	61 (*)	64 (*)	77 (*)	78 (*)	117	130	165				
TG	28,3	33,2	41,7	52,3	64,3	82,7	96,9	125,9	154,9	190,2				
WH	15	25	25	25	32	31	35	35	32	32				
Υ	45 (*)	58 (*)	65 (*)	69 (*)	76 (*)	82 (*)	91 (*)	86	86	98				
ZM + (2x)	139	163	188	200	216	241	260	289	302	356				

Pistone	25				32			40			50			63	
Stelo	12	-	18	14	18	22	18	22	28	22	28	36	28	36	45
B f9	24	-	30	26	30	34	30	34	42	34	42	50	42	50	60
VD	6			12			12			9			13		

Pistone		80			100			125			160			200	
Stelo	36	45	56	45	56	70	56	70	90	70	90	110	90	110	140
B f9	50	60	72	60	72	88	72	88	108	88	108	133	108	133	163
VD	9 10					10			7			7			

(*) = Quota non conforme con ISO 6020/2 – 1991 (2x) = doppia corsa Cilindri serie DK: quote F e G sostituite da GA

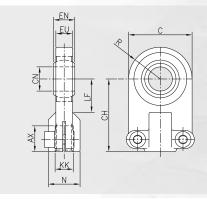

ACCESSORI

Viste le notevoli forze in gioco, è necessario garantire la perfetta coassialità tra il cilindro e il carico movimentato, per ottenere una maggiore durata nel tempo.

Nel caso di un ancoraggio di tipo rigido è di grossa utilità il montaggio sull'estremità dello stelo di un sistema auto-allineante.

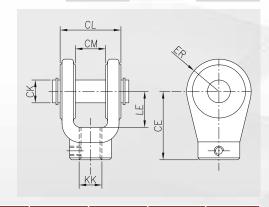
Sono disponibili i seguenti tipi di terminali stelo e supporti appropriati

TERMINALE CON SNODO SFERICO "CS" ISO 6982


CS

	CS12125	CS1415	CS1615	CS2015	CS272	CS332	CS422	CS482	CS643	CS803	CS1003
AX	17	19	23	29	37	46	57	64	86	96	113
С	32	40	47	58	70	89	108	132	168	212	264
CH	38	44	52	65	80	97	120	140	180	210	260
CN	12	16	20	25	32	40	50	63	80	100	125
EN	12	16	20	25	32	40	50	63	80	100	125
EU	10,05	13	17	21	27	32	40	52	66	85	103
KK	M12x1,25	M14x1,5	M16x1,5	M20x1,5	M27x2	M33x2	M42x2	M48x2	M64x3	M80x3	M100x3
LF	14	18	22	27	32	41	50	62	78	98	120
N	16	21	25	30	38	47	58	70	90	110	135
R	16	20	24	29	35	40	54	66	84	106	132
Forza Statica (kN)	24,5	36,5	48	78	114	204	310	430	695	1060	1430
Forza Dinamica (kN)	10,5	17,5	30	48	67	100	156	255	400	610	950

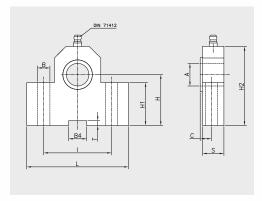
TERMINALE STELO CON SNODO SFERICO "TS" DIN 24555


TS

	TS10125	TS12125	TS1415	TS1615	TS2015	TS272	TS332	TS422	TS482	TS643
AX	15	17	19	23	29	37	46	57	64	86
С	32	42	50	62	76	96	116	150	195	235
СН	42	48	58	68	85	105	130	150	185	240
CN	12	16	20	25	30	40	50	60	80	100
EN	10	14	16	20	22	28	35	44	55	70
EU	8	11	13	17	19	23	30	38	47	57
KK	M10x1,25	M12x1,25	M14x1,5	M16x1,5	M20x1,5	M27x2	M33x2	M42x2	M48x2	M64x3
LF	18	22	28	34	38	48	62	74	98	122
N	17	21	25	30	36	45	55	68	78	100
R	16	21	25	31	38	48	58	75	98	118
Forza Statica (kN)	17	28,5	42,5	67	108	156	245	380	585	865
Forza Dinamica (kN)	10,8	21,1	30	48	62	100	156	245	400	610

TERMINALE STELO A FORCELLA CON PERNO "CF" ISO 8133

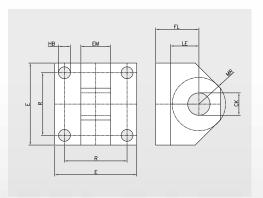
CF


	CF10125	CF12125	CF1415	CF1615	CF2015	CF272	CF332	CF422	CF482	CF643	CF803
CE	32	36	38	54	60	75	99	113	126	168	168
CK	10	12	14	20	20	28	36	45	56	70	70
CL	24	32	40	60	60	80	100	120	140	160	160
CM	12	16	20	30	30	40	50	60	70	80	80
ER	12	17	17	29	29	34	50	53	59	78	78
KK	M10x1,25	M12x1,25	M14x1,5	M16x1,5	M20x1,5	M27x2	M33x2	M42x2	M48x2	M64x3	M80x3
LE	13	19	19	32	32	39	54	57	63	83	83
Forza (kN)	8	12,5	20	32	50	80	125	200	320		

SUPPORTO CILINDRO "ISH" ISO 8132

* utilizzabile su cilindri con ancoraggio "G – L – H" (Pag. 27 - 28 – 29)

ISH

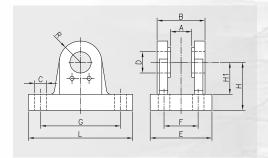


		ISH025	ISH032	ISH040	ISH050	ISH063	ISH080	ISH100	ISH125	ISH160
A (H7)		12	16	20	25	32	40	50	63	80
ØB (H13)		9	11	11	13,5	17,5	22	26	33	39
B4 (N9)		10	16	16	25	25	36	36	50	50
С		8	10	10	12	15	16	20	25	31
Н		34	40	45	55	65	76	95	112	140
H1	mm.	25	30	38	45	52	60	75	85	112
H2 (MAX)		49	59	69	80	100	120	140	177	220
ş I		40	50	60	80	110	125	160	200	250
L		63	80	90	110	150	170	210	265	325
S		17	21	21	26	33	41	51	61	81
T (0/+0,3)		3,3	4,3	4,3	5,4	5,4	8,4	8,4	11,4	11,4
Forza Nominale	kN	8	12,5	20	32	50	80	125	200	320

SUPPORTO CILINDRO "CM" ISO 8133 - DIN 24555 - DIN 24556

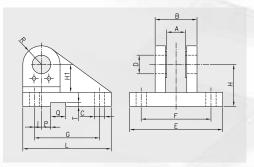
* da utilizzare per il fissaggio su testate cilindri "M" (Pag.24)

CM


		CM025	CM032	CM040	CM050	CM063	CM080	CM100	CM125	CM160	CM200
ØCK (H8)		10	12	14	20	20	28	36	45	56	70
Е		40	45	60	75	90	115	130	165	205	245
EM	mm. 12 23 5,5 13 12 28,3	12	16	20	30	30	40	50	60	70	80
FL		23	29	29	48	48	59	79	87	103	132
НВ		5,5	6,6	9	13,5	13,5	17,5	17,5	24	30	33
LE min		13	19	19	32	32	39	54	57	63	82
MR		12	17	17	29	29	34	50	53	59	78
R		28,3	33,2	41,7	52,3	64,3	82,7	96,9	125,9	154,9	190,2

SUPPORTO CILINDRO "CSA" 180° ISO 8132

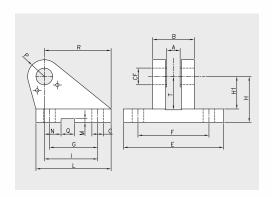
* da utilizzare su terminali stelo con snodo sferico tipo CS (Pag.40)



		CSA010	CSA012	CSA016	CSA020	CSA025	CSA032	CSA040	CSA050	CSA063	CSA080
	А	10	12	16	20	25	32	40	50	63	80
	В	24	28	36	45	56	70	90	110	140	170
	С	6,6	9	11	11	13,5	17,5	22	26	33	39
	D (H9)	10	12	16	20	25	32	40	50	63	80
	Е	33	40	50	58	70	85	108	130	160	210
mm.	F	17	20	26	32	40	50	65	80	100	125
	G	42	50	65	75	85	110	130	170	210	250
	Н	32	34	40	45	55	65	76	95	112	140
	H1	22	22	27	30	37	43	52	65	75	95
	L	60	70	90	98	113	143	170	220	270	320
	R	10	12	16	20	25	32	40	50	63	80
kN	Forza nominale	5	8	12,5	20	32	50	80	125	200	320

SUPPORTO CILINDRO "CSB" 90° ISO 8132

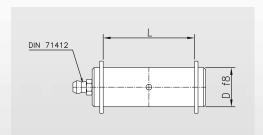
* da utilizzare su terminali stelo con snodo sferico tipo CS (Pag.40)


		CSB010	CSB012	CSB016	CSB020	CSB025	CSB032	CSB040	CSB050	CSB063	CSB080
	А	10	12	16	20	25	32	40	50	63	80
	В	24	28	36	45	56	70	90	110	140	170
	С	6,6	9	11	11	13,5	17,5	22	26	33	39
	D (H9)	10	12	16	20	25	32	40	50	63	80
	Е	56	72	90	100	120	145	185	215	270	320
	F	39	52	65	70	90	110	140	165	210	250
	G	44	45	55	70	85	110	125	150	170	210
mm.	Н	32	34	40	45	55	65	76	95	112	140
mm.	H1	22	22	27	30	37	43	52	65	75	95
	ı	2	2	3,5	7,5	10	14,5	17,5	25	33	45
	L	60	65	80	95	115	145	170	200	230	280
	Р	10	10	10	10	10	6	6	-	-	-
	Q	8	10	16	16	25	25	36	36	50	50
	R	10	12	16	20	25	32	40	50	63	80
	Т	3,3	3,3	4,3	4,3	5,4	5,4	8,4	8,4	11,4	11,4

SUPPORTO CILINDRO "CTS" DIN 24556

- * da utilizzare su cilindri ancoraggio "D" MP5 (Pag. 25)
- * da utilizzare su terminali stelo con snodo sferico tipo TS (Pag.41)

CTS

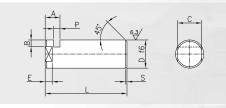


		CTS012	CTS016	CTS020	CTS025	CTS030	CTS040	CTS050	CTS060	CTS080	CTS100
	Α	10	14	16	20	22	28	35	44	55	70
	В	30	40	50	60	70	80	100	120	160	200
	С	9	11	13,5	15,5	17,5	22	30	39	45	48
	CF (K7)	12	16	20	25	30	40	50	60	80	100
	Е	75	95	120	140	160	190	240	270	320	400
	F	55	70	85	100	115	135	170	200	240	300
	G	40	55	58	70	90	120	145	185	260	300
	Н	40	50	55	65	85	100	125	150	190	210
mm.	H1	28	37	39	48	62	72	90	108	140	150
	ı	46	61	64	78	97	123	155	187	255	285
	L	60	80	90	110	135	170	215	260	340	400
	М	3,3	4,3	4,3	5,4	5,4	8,4	8,4	11,4	11,4	12,4
	N	16	18	20	22	24	24	35	35	35	35
	Р	12	16	20	25	30	40	50	60	80	100
	Q	10	16	16	25	25	36	36	50	50	63
	R	56	74	80	98	120	148	190	225	295	335
	Т	29	38	40	49	63	73	92	110	142	152
kN	Forza Nomi- nale	8	12,5	20	32	50	80	125	200	320	500

PERNO "PCS" PER SUPPORTO CSA E CSB

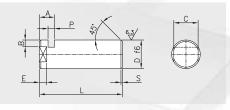
*da utilizzare su supporti CSA E CSB (Pag. 43)

PCS


		PCS010	PCS012	PCS016	PCS020	PCS025	PCS032	PCS040	PCS050	PCS063	PCS080
	D (f8)	10	12	16	20	25	32	40	50	63	80
mm.	L	25	29	37	46	57	72	92	112	142	172
kN	Forza Nominale	5	8	12,5	20	32	50	80	125	200	320

PERNO "PTS" PER SUPPORTO CTS

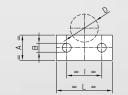
* da utilizzare su supporti CTS (Pag.44) fornito con piastrino PP



		PTS012	PTS016	PTS020	PTS025	PTS030	PTS040	PTS050	PTS060	PTS80	PTS100
	D (h6)	12	16	20	25	30	40	50	60	80	100
	L	40	50	62	72	85	100	122	145	190	235
	А	8	8	10	10	13	16	19	20	26	30
mm	Р	3,3	3,3	4,5	4,5	5,5	6,5	9	9	11	13
mm.	Е	4,5	5,5	5,5	5,5	7,5	9,5	10	11	15	15
	С	10	13	17	22	24	32	41	50	70	90
	В	4	4	5	5	6	7	8	9	11	14
	S	1	1	1,5	1,5	2	2	2	2	3	3

PERNO "KCS" PER SUPPORTO CSA E CSB

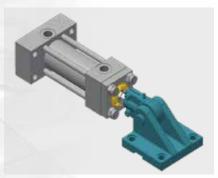
* da utilizzare su supporti CSA e CSB (Pag. 43) fornito con piastrino PP



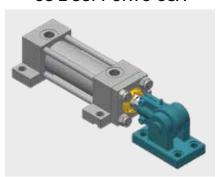
		KCS010	KCS012	KCS016	KCS020	KCS025	KCS030	KCS040	KCS050	KCS060	KCS080
	D (f8)	10	12	16	20	25	30	40	50	60	80
	L	34	38	46	58	72	85	100	122	145	190
	А	8	8	8	10	10	13	16	19	20	26
mm	Р	3,3	3,3	3,3	4,5	4,5	5,5	6,5	9	9	11
mm.	E	4,5	4,5	5,5	5,5	6,5	8,5	8,5	8,5	8,5	11,5
	С	8	10	13	17	21	27	32	41	55	5
	В	3	4	4	5	5	6	7	8	9	11
	S	1	1	1	1,5	1,5	2	2	2	2	3

PIASTRINA DI FISSAGGIO "PP"

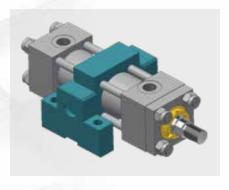
* fornito con perno PTS e KCS



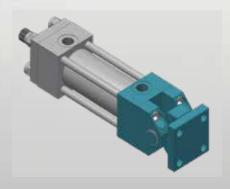
		PP012	PP020	PP025	PP030	PP040	PP050	PP060	PP080	PP100
	В	6,4	6,4	6,4	6,4	8,4	8,4	10,5	10,5	10,5
	D	12	20	25	30	40	50	60	80	100
	А	15	18	18	20	20	25	25	30	40
mm.	S	3	4	4	5	6	8	8	10	12
	L	27	40	40	45	62	65	80	90	120
	1	16	25	25	30	42	45	55	60	90
М	Filetto fori	6x12	6x16	6x16	6x16	8x20	8x20	10x25	10x25	10x25
Ø	Anello di sicurezza	6	6	6	6	8	8	10	10	10

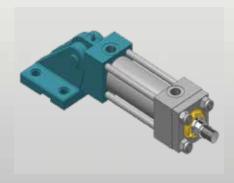


ESEMPI DI ATTACCHI


ATTACCO CON SNODO SFERICO CS E SUPPORTO CSB

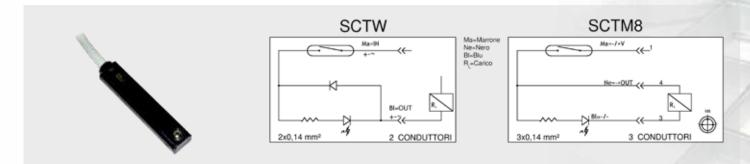
ATTACCO CON SNODO SFERICO CS E SUPPORTO CSA


ATTACCO CON PERNI INTERMEDI "H" E SUPPORTO ISH


ATTACCO CON PERNI POSTERIORI "L" E SUPPORTO ISH ATTACCO CON SNODO SFERICO

ATTACCO CON CERNIERA FEMMINA "M" E SUPPORTO CM

ATTACCO CON CERNIERA SNODO "D" E SUPPORTO CTS


SENSORI

SENSORI REED:

Il finecorsa è costituito da un contatto Reed annegato in resina sintetica; all'avvicinarsi di un campo magnetico (magnete permanente montato sul pistone) il contatto si chiude generando un segnale elettrico.

Tipo "SCTM8" a 3 fili con connettore (temperature fino a 85°)

Tipo "SCTW" a 2 fili con cavo annegato (* per abbinamento con guarnizioni Viton® e temperature fino 120°)

SENSORI MAGNETICI

	Caratteristiche tecniche	
Sensore	SCTW	SCTM8
Tensione di lavoro	0-30 V AC/DC	5-30V DC
Corrente (max) REED	500 mA	250 mA
Potenza (max) REED	10 W 10VA	10 W 8VA
Indicatore luminoso Led	Nessuno	Giallo
Cavo	PUR 2X0,14mm. ²	PVC/PUR 3X0,14mm. ²
Lunghezza cavo	2,5 m.	0,15 m.
Connessione		Connettore Maschio M8
Temperatura	- 40°C / +120 °C	- 20°C / +85 °C
Grado di protezione	IP67	IP67
Terminale cavo	a 2 fili	a 3 fili con connettore

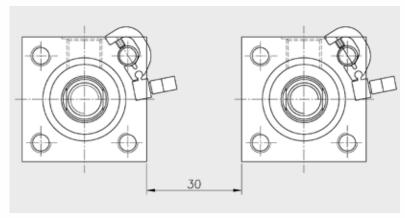
CAVO CON CONNETTORI PER SENSORE SCTM8

	CONN	CONN5	CONN10
Lunghezza cavo	2,5 m	5 m	10 m
Connessione	Femmina M8	Femmina M8	Femmina M8
N° poli	3	3	3

STAFFE PORTA SENSORE

	S70	S145	S165
In funzione al ø di alesaggio del cilindro	25 - 32 - 40	50 - 63	80 - 100

AVVERTENZE PER L'USO DEI CILINDRI MAGNETICI


Il campo magnetico misurato all'esterno della camicia del cilindro, si estende per circa 5 mm in lunghezza, pertanto va fatta attenzione al posizionamento meccanico del sensore per avere il segnale il più possibile in prossimità della misura voluta. Nel caso di montaggio ravvicinato di cilindri magnetici con relativi finecorsa, la distanza tra loro deve essere di almeno 30 mm.

Se il cilindro magnetico è posizionato nell'incavo di un sistema ferroso ad assorbimento magnetico, mantenere una distanza minima di almeno 20 mm tra l'ingombro esterno del cilindro e la parete metallica immediatamente più vicina (esclusa parete di fissaggio), onde evitare la deformazione del campo magnetico ed il conseguente mancato azionamento dei sensori.

È consigliabile non utilizzare cilindri con finecorsa magnetici in vicinanza di forti campi magnetici (es... saldatrici a resistenza).

In nessun caso si deve superare la corrente massima, la tensione d'esercizio e la potenza massima di commutazione del contatto.

In caso di carichi induttivi, al momento del disinserimento, si produce un elevato picco di tensione (vedi bobine di elettrovalvole); per questa ragione è necessario prevedere un adeguato circuito di protezione (R-C) o varistore per proteggere il sensore. Gli stessi effetti si hanno quando i fili del sensore superano una lunghezza di 5 m. La potenza di spunto (relè-fusibile-

lampada a filamento) è notevolmente superiore (8-10 volte) alla potenza di regime quindi è necessario basarsi sul valore di spunto nella scelta del sensore.

Per la regolazione a banco della posizione dei sensori è consigliabile l'uso di un tester, fornibile a richiesta impostato ohmicamente.

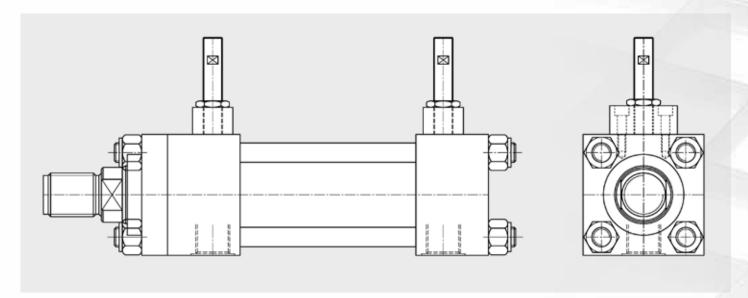
COLLEGAMENTO IN SERIE DEI SENSORI

I sensori REED SCTW (a due fili) ammettono il collegamento in serie, tenendo presente che per ogni sensore c'è un abbattimento di tensione di circa 4V, si possono collegare un numero massimo di 2 sensori, a patto che la tensione di alimentazione non sia inferiore a 24VDC. In caso necessiti il collegamento in serie di 3 o più sensori usare il tipo SCTM8 a 3 fili.

SENSORI INDUTTIVI DI PROSSIMITÀ

I sensori induttivi di prossimità rilevano la corsa dello stelo senza contatto e vengono normalmente applicati la dove non si utilizzano i sensori magnetici per motivi tecnici o ambientali.

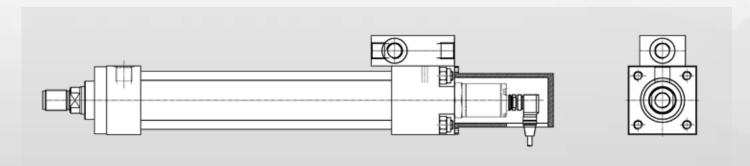
Il principio di funzionamento dei sensori induttivi di prossimità si basa sul rilevamento di parti metalliche nelle immediate vicinanze del loro lato sensibile, senza che vi sia un effettivo contatto fisico.


Quando il pistone arriva in finecorsa il sensore rileva la presenza del particolare metallico all'interno fornendo il segnale di commutazione.

Per un corretto funzionamento vanno utilizzati ad una temperatura da -25°C a +80°C, inoltre l'assenza di contatto rende questi sensori altamente affidabili, non risentono di vibrazioni e hanno una buona resistenza alle condizioni ambientali come disturbi elettrici ed elettromagnetici.

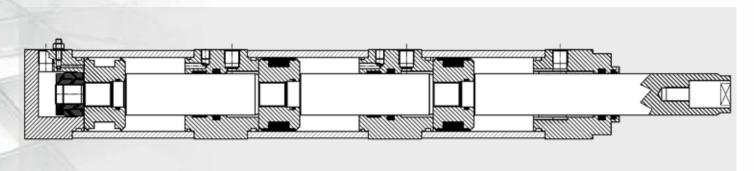
I sensori di finecorsa possono essere montati sia sulla testata anteriore che posteriore.

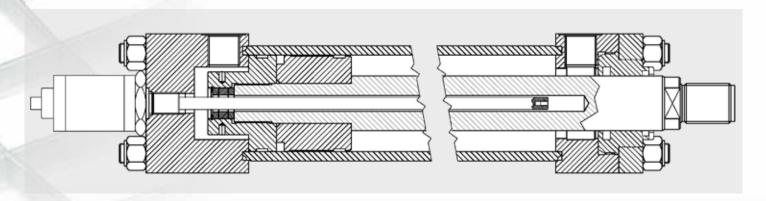
(* per motivi di ingombro si possono montare su cilindri a partire da alesaggio 40)


Per chiarimenti consultare il nostro Ufficio Tecnico.

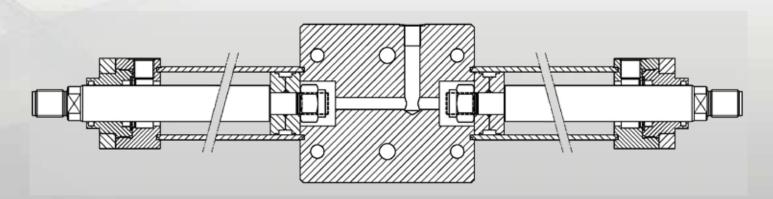
TRASDUTTORE

Il servocilindro è predisposto per il montaggio di trasduttori (potenziometrico o magnetosonico), i quali vengono utilizzati per ottenere posizioni di controllo molto precise.

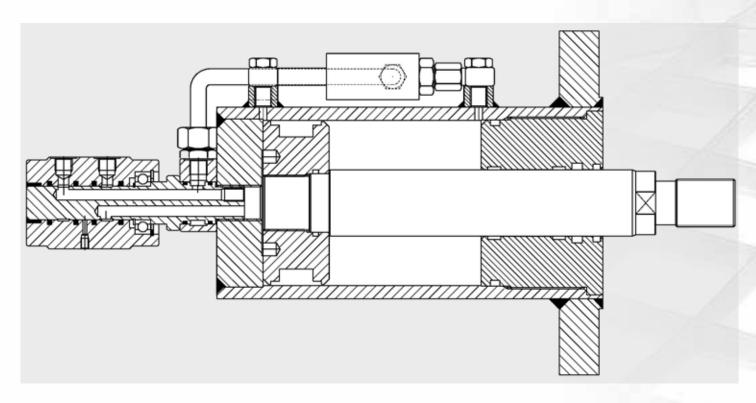

Per chiarimenti consultare il nostro Ufficio Tecnico.



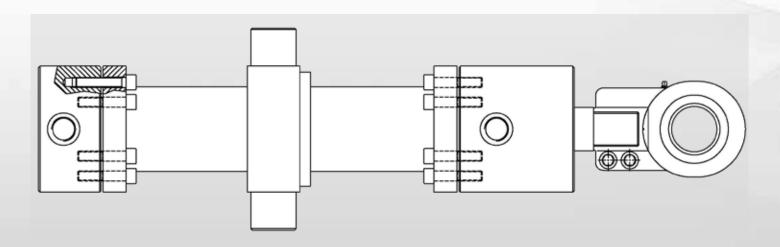
ESEMPI DI ESECUZIONI SPECIALI


CILINDRO TANDEM A 3 STADI, ALESAGGIO Ø80, STELO Ø45, CORSA 60 mm. AMMORTIZZATO POSTERIORMENTE, PRESSIONE DI ESERCIZIO 100 BAR PER STADIO.

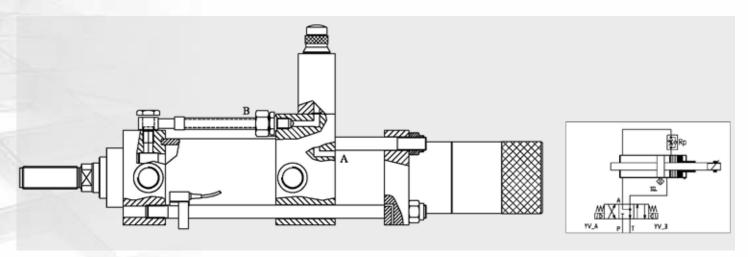
CILINDRO ISO 6020/2, ALESAGGIO Ø80, STELO Ø45, CORSA 1100 mm. CON SISTEMA DI RILEVAMENTO DIGITALE – ANALOGICO INCORPORATO, PRESSIONE DI ESERCIZIO 150 BAR.



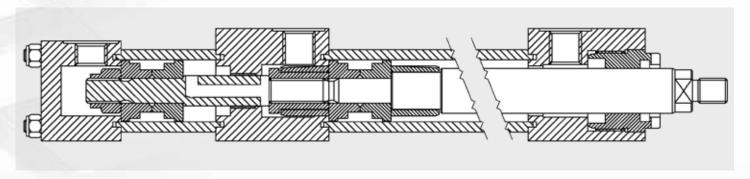
CILINDRO CONTRAPPOSTO SU BASE ISO 6020/2 CON CORSA DIFFERENZIATA, ALESAGGIO Ø 63, STELO Ø 36, PRESSIONE DI ESERCIZIO 130 BAR.

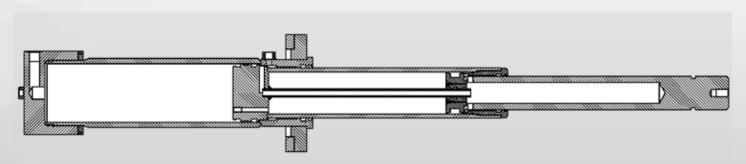


CILINDRO ALESAGGIO Ø160, STELO Ø70, CORSA 115 mm. FLANGIA ANTERIORE CON VALVOLA DI BLOCCO, SOGGETTO A ROTAZIONE DI 400 GIRI/MIN, ALIMENTATO DA UN GIUNTO ROTANTE, PRESSIONE DI ESERCIZIO 130 BAR.



CILINDRO SU BASE ISO 6022, ALESAGGIO \emptyset 100, STELO \emptyset 70, CORSA 1650 mm, PERNI INTERMEDI, PRESSIONE DI LAVORO 280 BAR




CILINDRO MAGNETICO SU BASE ISO 6020/2, ALESAGGIO Ø80, STELO Ø36, CORSA 100 mm. REGOLABILE, CON FRENO DI ALTA PRECISIONE INDIPENDENTE AD AGGANCIO REGOLABILE, PRESSIONE DI ESERCIZIO 100 BAR.

CILINDRO SU BASE ISO 6020/2 CON CORSA DIFFERENZIATA, ALESAGGIO Ø25, STELO Ø18, CORSE 20 + 250mm, CON AMMORTIZZO ANTERIORE ED INTERMEDIO, PRESSIONE DI LAVORO 100BAR.

CILINDRO TELESCOPICO A DOPPIO EFFETTO, 1º STADIO ALESAGGIO Ø140, 2º STADIO ALESAGGIO Ø100, STELO Ø80, PRESIONE DI ESERCIZIO 180 BAR.

LA GAMMA DEI PRODOTTI

CILINDRI COMPATTI A CORSA BREVE

CILINDRI ISO 6022

CILINDRI SPECIALI A DISEGNO

MOLTIPLICATORI DI PRESSIONE

CILINDRI OLEODINAMICI CON FONDELLO SALDATO

GARANZIA E LIMITI DI RESPONSABILITÀ

Il prodotto è garantito 12 (dodici) mesi dalla data di spedizione dal proprio stabilimento. La garanzia è intesa per difetti di materiale o di lavorazione, verificatesi in condizioni di:

- Corretto uso
- Normali condizioni di utilizzo
- Installazione tecnicamente adatta

La garanzia è limitata alla riparazione o alla sostituzione a giudizio di IDROTECK Srl di qualsiasi articolo o parte di esso, di cui con i criteri sopracitati sia constatato il difetto. L'eventuale sostituzione avverrà solo in porto assegnato. IDROTECK si riserva diritto di ispezionare il prodotto a sua scelta sia presso l'acquirente che nel proprio stabilimento, richiedendo che il pezzo sia spedito in porto franco.

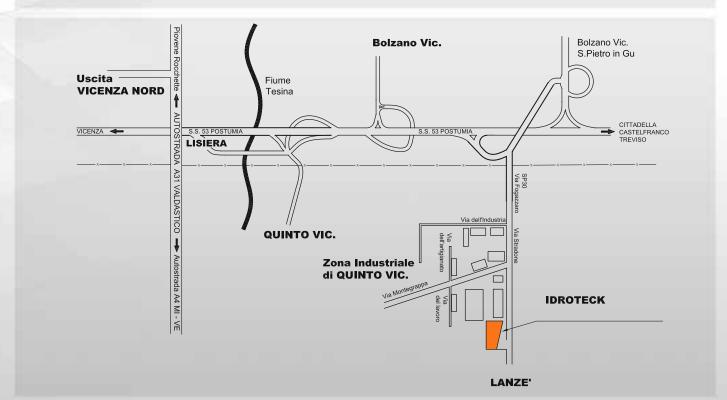
La suddetta garanzia non è estesa ad articoli danneggiati o avariati dopo la spedizione dallo stabilimento, né a quelli modificati o riparati da chiunque non sia espressamente autorizzato da IDROTECK Srl.

Non esistono altre forme di garanzia che quella sopracitata.

Qualsiasi descrizione dei prodotti venduti, incluse le caratteristiche espressamente richieste dall'acquirente, così come quelle che appaiono sui cataloghi ed altro materiale pubblicato dalla IDROTECK Srl al solo scopo di identificazione del prodotto, non crea l'esplicita garanzia di rispondenza del prodotto alla descrizione stessa. La conformità degli articoli acquistati all'uso che l'acquirente intende farne è di esclusiva pertinenza dello stesso.

In nessun caso IDROTECK Srl dovrà essere ritenuta responsabile per danni collegati all'uso improprio di parti da essa vendute, come installazione errata, utilizzo o funzionamento.

In ogni caso IDROTECK Srl non sarà responsabile per danni, incidenti o consequenziali se non nei limiti del corrispettivo percepito per gli articoli per i quali è provata la responsabilità.


IDROTECK Srl si riserva di cessare, modificare o rivedere i prodotti descritti o le loro caratteristiche.

Tutti i particolari sono di massima e possono variare a seconda dell'installazione.

Per ogni controversia il foro competente è quello di Vicenza.

IDROTECK Srl in linea al perfezionamento costante sullo sviluppo migliorativo dei prodotti, si riserva il diritto di modificare senza alcun preavviso il presente catalogo e le specifiche tecniche in esso contenute.

La riproduzione anche parziale di testi ed immagini contenute può essere effettuata esclusivamente su esplicita autorizzazione di IDROTECK Srl.

IDROTECK s.r.l.

Via Stradone, 2/A - 36050 Quinto Vicentino (VI)
Tel. +39 0444 355000 - Fax +39 0444 355012
vendite@idroteck.eu
www.idroteck.eu

